Skip to main content
Log in

Roles of a preselling strategy under asymmetric information

  • Published:
Marketing Letters Aims and scope Submit manuscript

Abstract

In many product markets, one firm may provide an option to buy ahead of time. In this circumstance, customers inevitably make a purchase decision under uncertainty on the future price as well as the valuation of product, which critically relies on the marginal cost. The marginal cost is usually private information of the firm in reality. There is a common misconception that the firm would profit a lot from the preselling owing to private information on the marginal cost. However, this paper finds the role of preselling under asymmetric information is disputable. We employ the framework of dynamic game to examine the impact of cost information asymmetry and signaling effect in influencing the firm?’s preselling strategy and profitability. We find the firm has no incentive to presell, and the information superiority may not benefit the firm. Likewise, the disadvantage of information may not hurt customers due to their rational expectation of cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In fact, the distribution of valuations can follow any distribution merely at the cost of complex computations.

  2. This assumption can be relaxed by allowing for a fraction of arrivals in the regular period. It does not alter our main insights regarding the impacts of asymmetric cost information.

  3. It is widely acknowledged that consumers have become more educated and sophisticated in recent years. Consumers intentionally gauge the sellers’ marketing behavior and game against the sellers. For more details, please see http://www.destinationcrm.com/Articles/CRM-News/CRM-Featured-Articles/Online-Consumers-Are-Becoming-More-Sophisticated-43176.aspx

References

  • Bolton, L.E., Warlop, L., Alba, J.W. (2003). Consumer perceptions of price (un) fairness. Journal of Consumer Research, 29(4), 474–491.

    Article  Google Scholar 

  • Elmaghraby, W., Gulcu, A., Keskinocak, P. (2008). Designing optimal preannounced markdowns in the presence of rational customers with multiunit demands. Manufacturing and Service Operations Management, 10(1), 126–148.

    Article  Google Scholar 

  • Gönsch, J., Klein, R., Neugebauer, M., Steinhardt, C. (2013). Dynamic pricing with strategic customers. Journal of Business Economics, 83(5), 505–549.

    Article  Google Scholar 

  • Guo, L. (2009). Quality disclosure formats in a distribution channel. Management Science, 55(9), 1513–1526.

    Article  Google Scholar 

  • Guo, L. (2015). Inequity aversion and fair selling. Journal of Marketing Research, 52(1), 77–89.

    Article  Google Scholar 

  • Guo, X., & Jiang, B. (2013). Signaling through price and quality to consumers with fairness concerns. Journal of Marketing Research, 53(6), 988–1000.

    Article  Google Scholar 

  • Shugan, S.M., & Xie, J. (2005). Advance-selling as a competitive marketing tool. International Journal of Research in Marketing, 22(3), 351–373.

    Article  Google Scholar 

  • Weatherford, L.R., & Pfeifer, P.E. (1994). The economic value of using advance booking of orders. Omega, 22(1), 105–111.

    Article  Google Scholar 

  • Xie, J., & Shugan, S.M. (2001). Electronic tickets, smart cards, and online prepayments: When and how to advance sell. Marketing Science, 20(3), 219–243.

    Article  Google Scholar 

  • Yang, D., Qi, E., Li, Y. (2015). Quick response and supply chain structure with strategic consumers. Omega, 52, 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

By solving \(\pi ^{\textsuperscript {Pre*}}(q,\tilde {c})=\pi ^{\textsuperscript {Re*}}(q,\tilde {c})\), we can obtain \(\tilde {c}=\frac {q}{3}\). Note that \(\pi ^{\textsuperscript {Pre*}}(q,c)-\pi ^{\textsuperscript {Re*}}(q,c)\) is strictly decreasing with c, and \(\pi ^{\textsuperscript {Pre*}}(q,0)>\pi ^{\textsuperscript {Re*}}\) (q, 0). Then, we have \(\pi ^{\textsuperscript {Pre*}}(q,c)>\pi ^{\textsuperscript {Re*}}(q,c)\) for \(c<\tilde {c}\); \(\pi ^{\textsuperscript {Pre*}}(q,c)\leq \pi ^{\textsuperscript {Re*}}(q,c)\) for \(c\geq \tilde {c}\). Then, Lemma 1 holds. □

Proof of Lemma 2

By solving \(\pi ^{\textsuperscript {Pre*}}(q,\hat {c})=\pi ^{\textsuperscript {Re*}}(q,\hat {c})\), we have \(\tilde {c}=\frac {2\sqrt {2}-2}{3}q\). Note that \(\pi ^{\textsuperscript {Pre*}}(q,c)-\pi ^{\textsuperscript {Re*}}(q,c)\) is strictly decreasing with c, and \(\pi ^{\textsuperscript {Pre*}}(q,0)>\pi ^{\textsuperscript {Re*}}(q,0)\). Then, we have \(\pi ^{\textsuperscript {Pre*}}(q,c)>\pi ^{\textsuperscript {Re*}}(q,c)\) for \(c<\hat {c}\); \(\pi ^{\textsuperscript {Pre*}}(q,c)\leq \pi ^{\textsuperscript {Re*}}(q,c)\) for \(c\geq \hat {c}\). Then, Lemma 2 holds. □

Proof of Proposition 1

Noting that \(\hat {c}=\frac {2\sqrt {2}-2}{3}q\) and \(\tilde {c}=\frac {q}{3}\), the result immediately follows. □

Proof of Proposition 2

Since both πS(q, c) and πA(q, c) are piecewise functions of c, we need to consider the three scenarios: \(c\in (\tilde {c},q)\), \(c\in (\hat {c},\tilde {c})\) and \(c\in (0,\hat {c})\): If \(c\in (\tilde {c},q)\), regular selling is more profitable in both the symmetric information case and the asymmetric information case. Hence, there is no difference, namely, πS(q, c) = πA(q, c). If \(c\in (\hat {c},\tilde {c})\), it is straightforward to have \(\pi ^{S}(q,c)>\pi ^{A}(q,c)\) since \(\frac {1}{2}q-\frac {(q-c)^{2}}{8q}-c>\frac {(q-c)^{2}}{4q}\) by Lemma 1. If \(c\in (0,\hat {c})\), we have \(\pi ^{S}(q,c)-\pi ^{A}(q,c)=\frac {(q-\hat {c}/2)^{2}}{8q}-\frac {(q-c)^{2}}{8q}\). Since \(-\frac {(q-c)^{2}}{8q}\) is increasing in c for any q, there is a unique point \(c^{\ast }=\frac {\hat {c}}{2}=\frac {\sqrt {2}-1}{3}q\) such that πS(q, c) = πA(q, c). Subsequently, πS(q, c) < πA(q, c) for 0 ≤ c < c, and πS(q, c) ≥ πA(q, c) for \(c^{\ast }\leq c\leq \hat {c}\).

Then, if c ∈ (0, c), πS < πA; if \(c\in (c^{\ast },\tilde {c})\), πS > πA; if \(c\in (\tilde {c},q)\), πS = πA. □

Proof of Proposition 3

Recall that

$$\begin{array}{@{}rcl@{}} p^{S}(q,c)=\left\{ \begin{array}{ll} \frac{1}{2}q-\frac{(q-c)^{2}}{8q}, & if\ c<\tilde{c};\\ \frac{q+c}{2}, & if\ c\geq \tilde{c}. \end{array} \right. \ \ \ \text{and} \ \ \ p^{A}(q,c)=\left\{ \begin{array}{ll} \frac{9 + 4\sqrt{2}}{36}q, & if\ c<\hat{c};\\ \frac{q+c}{2}, & if\ c\geq \hat{c}. \end{array} \right. \end{array} $$

Note that \(\hat {c}=\frac {2\sqrt {2}-2}{3}q\) and \(\tilde {c}=\frac {q}{3}\). Let \(\overline {\overline {c}}=\frac {\sqrt {2}-1}{3}q\). Then, we have

$$\begin{array}{@{}rcl@{}} &&p^{A}(q,c)-p^{S}(q,c)=\left\{ \begin{array}{cc} \frac{9 + 4\sqrt{2}}{36}q-\left[ \frac{1}{2}q-\frac{(q-c)^{2}}{8q}\right], & if\ c<\overline{\overline{c}}; \\ \frac{9 + 4\sqrt{2}}{36}q-\left[ \frac{1}{2}q-\frac{(q-c)^{2}}{8q}\right], & if\ \overline{\overline{c}}\leq c<\hat{c}; \\ \frac{q+c}{2}-\left[ \frac{1}{2}q-\frac{(q-c)^{2}}{8q}\right], & if\ \hat{c}\leq c<\tilde{c}; \\ \frac{q+c}{2}-\frac{q+c}{2}, & if\ c>\tilde{c}, \end{array} \right. \\ &=&\left\{ \begin{array}{cc} \left( \frac{q-c}{2\sqrt{2}}-\frac{2\sqrt{2}-1}{6}q\right) \left( \frac{q-c}{2\sqrt{2}}+\frac{2\sqrt{2}-1}{6}q\right), & if\ c<\overline{\overline{c}}; \\ \left( \frac{q-c}{2\sqrt{2}}-\frac{2\sqrt{2}-1}{6}q\right) \left( \frac{q-c}{2\sqrt{2}}+\frac{2\sqrt{2}-1}{6}q\right), & if\ \overline{\overline{c}}\leq c<\hat{c}; \\ \frac{(q+c)^{2}}{8q}, & if\ \hat{c}\leq c<\tilde{c}; \\ 0, & if\ c>\tilde{c}, \end{array} \right. \ \ \ \left\{ \begin{array}{cc} >0, & if\ c<\overline{\overline{c}}; \\ \leq 0, & if\ \overline{\overline{c}}\leq c<\hat{c}; \\ \geq 0, & if\ \hat{c}\leq c<\tilde{c}; \\ = 0, & if\ c>\tilde{c}. \end{array} \right. \end{array} $$

Then, the proof is completed. □

Proof of Proposition 4

In the case without asymmetric information, customers’ surplus is

$$\begin{array}{@{}rcl@{}} U^{S}(q,c) &=&\left\{ \begin{array}{cc} \frac{1}{2}q-p^{S}(q,c), & if\ c<\tilde{c};\\ \mathsf{E}\left[ (V(q)- \frac{q+c}{2})^{+} \right], & if\ c\geq\tilde{c}, \end{array} \right.=\left\{ \begin{array}{cc} \frac{(q-c)^{2}}{8q}, & if\ c<\tilde{c};\\ \frac{(q-c)^{2}}{8q}, & if\ c\geq\tilde{c}, \end{array} \right. = \frac{(q-c)^{2}}{8q}. \end{array} $$

In the case with asymmetric information, customers surplus becomes

$$\begin{array}{@{}rcl@{}} U^{A}(q,c)&=&\left\{ \begin{array}{cc} \frac{1}{2}q-p^{A}(q,c), & if\ c<\hat{c};\\ \mathsf{E}\left[ (V(q)-\frac{q+c}{2})^{+}\right] , & if\ c\geq \hat{c}, \end{array} \right.=\left\{ \begin{array}{cc} \frac{1}{2}q-\frac{9 + 4\sqrt{2}}{36}q, & if\ c<\hat{c};\\ \frac{(q-c)^{2}}{8q}, & if\ c\geq \hat{c}, \end{array} \right.\\&=&\left\{ \begin{array}{cc} \frac{9-4\sqrt{2}}{36}q, & if\ c<\hat{c};\\ \frac{(q-c)^{2}}{8q}, & if\ c \geq \hat{c}. \end{array} \right. \end{array} $$

Note that \(\overline {\overline {c}}=\frac {\sqrt {2}-1}{3}q\). Then, we have

$$\begin{array}{@{}rcl@{}} &&U^{A}(q,c)-U^{S}(q,c)=\left\{ \begin{array}{cc} \frac{9-4\sqrt{2}}{36}q-\frac{(q-c)^{2}}{8q}, & if\ c<\overline{\overline{c}}; \\ \frac{9-4\sqrt{2}}{36}q-\frac{(q-c)^{2}}{8q}, & if\ \overline{\overline{c}}\leq c<\hat{c}; \\ \frac{(q-c)^{2}}{8q}-\frac{(q-c)^{2}}{8q}, & if\ c\geq \hat{c}, \end{array} \right. \\ & = &\left\{ \begin{array}{cc} -\left( \frac{q-c}{2\sqrt{2}}-\frac{2\sqrt{2}-1}{6}q\right) \left( \frac{q-c}{2\sqrt{2}}+\frac{2\sqrt{2}-1}{6}q\right) , & if\ c<\overline{\overline{c}}; \\ -\left( \frac{q-c}{2\sqrt{2}}-\frac{2\sqrt{2}-1}{6}q\right) \left( \frac{q-c}{2\sqrt{2}}+\frac{2\sqrt{2}-1}{6}q\right) , & if\ \overline{\overline{c}}\leq c<\hat{c};\!\!\!\! \\ \frac{(q-c)^{2}}{8q}-\frac{(q-c)^{2}}{8q}, & if\ c\geq \hat{c}, \end{array} \right. \ \ \ \left\{ \begin{array}{cc} <0, & if\ c<\overline{\overline{c}}; \\ >0, & if\ \overline{\overline{c}}\leq c<\hat{c}; \\ = 0, & if\ c\geq \hat{c}. \end{array} \right. \end{array} $$

Then, Proposition 4 follows. □

Proof of Lemma 3

Letting \({\Delta }^{S}(c)=\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)- \pi ^{\textsuperscript {Re*}}(q,\alpha ,c)=\frac {\alpha +(1-\alpha )q}{2}-\alpha \frac {(1 + 2\delta )(1-c)^{2}}{8}-(1-\alpha )\frac {(1 + 2\delta )(q-c)^{2}}{8q}-c\), we have

$$\begin{array}{@{}rcl@{}} \frac{d{\Delta}^{S}(c)}{dc}&=&-\alpha\frac{(1 + 2\delta)c}{4}-(1-\alpha)\frac{(1 + 2\delta)c}{4q}-\frac{3-2\delta}{4}<0. \end{array} $$

Then, ΔS(c) is strictly decreasing with c. Note that \({\Delta }^{S}(0)=\frac {(\alpha +(1-\alpha )q)(3-2\delta )}{8}>0\). Then, there exists a unique \(\tilde {c}^{UQ}\) such that \(\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)>\pi ^{\textsuperscript {Re*}}(q,\alpha ,c)\) if \(c<\tilde {c}^{UQ}\) and \(\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)\leq \pi ^{\textsuperscript {Re*}}(q,\alpha ,c)\) if \(c\geq \tilde {c}^{UQ}\). Hence, Lemma 3 holds. □

Proof of Lemma 4

Letting \({\Delta }^{A}(c)=\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)- \pi ^{\textsuperscript {Re*}}(q,\alpha ,c)=\frac {\alpha +(1-\alpha )q}{2}-\alpha \frac {(1-c/2)^{2}}{8}-(1-\alpha )\frac {(q-c/2)^{2}}{8q}-\delta \alpha \frac {(1-c)^{2}}{4}-\delta (1-\alpha )\frac {(q-c)^{2}}{4q}-c\), we have

$$\begin{array}{@{}rcl@{}} \frac{d{\Delta}^{A}(c)}{dc}&=&-\alpha\frac{(1 + 8\delta)c}{16}-(1-\alpha)\frac{(1 + 8\delta)c}{16q}-\frac{7-4\delta}{8}<0. \end{array} $$

Then, ΔA(c) is strictly decreasing with c. Note that \({\Delta }^{A}(0)=\frac {(\alpha +(1-\alpha )q)(3-2\delta )}{8}>0\). Then, there exists a unique \(\hat {c}^{UQ}\) such that \(\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)>\pi ^{\textsuperscript {Re*}}(q,\alpha ,c)\) if \(c<\hat {c}^{UQ}\) and \(\pi ^{\textsuperscript {Pre*}}(q,\alpha ,c)\leq \pi ^{\textsuperscript {Re*}}(q,\alpha ,c)\) if \(c\geq \hat {c}^{UQ}\). Hence, Lemma 4 holds. □

Proof of Proposition 5

Note that ΔS(c) and ΔA(c) strictly decrease with c and \({\Delta }^{S}(c)>{\Delta }^{A}(c)\) for any c. Also note that \({\Delta }^{S}(\tilde {c}^{UQ})= 0\) and \({\Delta }^{A}(\hat {c}^{UQ})= 0\). Then, there must be \(\hat {c}^{UQ}<\tilde {c}^{UQ}\). Then, Proposition 5 follows. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guan, X. & Yi, Z. Roles of a preselling strategy under asymmetric information. Mark Lett 30, 91–105 (2019). https://doi.org/10.1007/s11002-019-09477-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11002-019-09477-9

Keywords

Navigation