Marine Geophysical Research

, Volume 37, Issue 3, pp 207–228 | Cite as

Sequence stratigraphic analysis of Eocene Rock Strata, Offshore Indus, southwest Pakistan

  • Natasha Khan
  • Khaista Rehman
  • Sajjad Ahmad
  • Jamil Khokher
  • M. Iqbal Hajana
  • M. Hanif
Original Research Paper


In this study, seismic data from two wells (Pak G2-1 and Indus Marine-1C) and age diagnostic larger benthic foraminifera (LBF) within drill cuttings has been used for the first time to identify depositional sequences within the carbonates in the Offshore Indus Basin, Pakistan. The Offshore Indus is tectonically categorized as a passive continental margin where carbonates occur as shelf carbonates in the near offshore and on volcanic seamounts in deeper waters. Seismic data analysis has indicated the presence of minor faults and carbonate buildups above the igneous basement in the south. Patterns of the seismic reflections enabled definition of three seismic facies units identified as: Unit 1 basement, represented by chaotic, moderate amplitude reflection configuration; while parallel bedding and the drape of overlying strata is typical character of Unit 2, carbonate mound facies. The younger Miocene channels represent Unit 3. The diagnosis of Alveolina vredenburgi/cucumiformis biozone confirmed the Ilerdian (55–52 Ma) stage constituting a second order cycle of deposition for the Eocene carbonates (identified as Unit 2). The carbonate succession has been mainly attributed to an early highstand system tract (HST). The environmental conditions remained favorable leading to the development of keep-up carbonates similar to pinnacle buildups as a result of aggradation during late transgressive system tract and an early HST. The carbonate sequence in the south (Pak G2-1) is thicker and fossiliferous representing inner to middle shelf depths based on fauna compared to the Indus Marine-1C in the north, which is devoid of fossils. Three biozones (SBZ 5, SBZ 6 and SBZ 8) were identified based on the occurrence of LBF. The base of the SBZ 5 zone marks the larger foraminifera turnover and the Paleocene–Eocene (P–E) boundary. The LBF encountered in this study coincides with earlier findings for the P–E boundary. Our findings indicate that the entire Ilerdian stage ranges from 55.5 to 52 Ma that was the episode of warmer water conditions on the carbonate shelves leading to the diversification of K-strategist larger foraminifera. The larger foraminiferal assemblage encountered in this study confirms the findings. The possible indication of stratigraphic-combination traps, revealed as reflection terminations, make carbonate mounds in the south a potential exploration target.


Offshore Seismic stratigraphy Biostratigraphy Ilerdian stage Carbonates Seamounts Canyons Arabian Sea 



Directorate General of Petroleum Concessions (DGPC) and Hydrocarbon Development Institute of Pakistan (HDIP) are highly acknowledged for providing seismic data and well samples for this research. We are thankful to National Centre of Excellence in Geology and Department of Geology, University of Peshawar, Pakistan for providing research facilities. Thanks are also extended to Rashid Messiah (Rock cutter, Department of Geology, University of Peshawar) for his kind help in preparation of thin sections. We are also thankful to the anonymous reviewers for their suggestions to improve the manuscript.


  1. Aubry MP, Ouda K (2003) The upper Paleocene–lower Eocene of the upper Nile valley. Introduction. In: Ouda K, Aubry M-P (eds) Part 1, Stratigraphy. Micropaleontology, vol 49 (Suppl 1). pp 2–7Google Scholar
  2. Aubry MP, Cramer BS, Miller KG, Wright JD, Kent DV, Olsson RK (2000) Late Paleocene event chronology: unconformities, not diachrony. Bull Soc Géol France 171:367–378CrossRefGoogle Scholar
  3. Bally AW (2002) Atlas of seismic stratigraphy. AAPG Stud Geol No. 27, (volumes 1, 2, 3)Google Scholar
  4. Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene planktonic foramineferal zonation. J Foramin Res 35:279–298CrossRefGoogle Scholar
  5. Berggren, W. A., Kent, D. V., Swisher, C. C., Aubry, M. P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: W. A. Berggren, D.V. Kent, M.P. Aubry & J. Hardenbol, Eds. Geochronology, time scale and global correlations: A unified temporal framework for an historical geology. Soc. Econ. Pal. Min. Spec. Public. 54, 129–212Google Scholar
  6. Berggren WA, Aubry MP, van Fossen M, Kent DV, Norris RD, Quillévéré F (2000) Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean): Palaeogeography. Palaeoclimatology, Palaeoecology 159:1–51CrossRefGoogle Scholar
  7. Bieda, F., 1930. Remarques sur la nomenclature et la classification de certaines especes de nummulites, Ist Partie. Bulletin International de l’ academie polonaise des sciences et des letters, Sciences Mathematics et Naturelles, BI, Karakow, 81–108Google Scholar
  8. Blondeau, A., 1972a. Les nummulites; de l’enseignment a la recherché des sciences de la terra, Paris; Vuibert, 1–254Google Scholar
  9. Boussac, J., 1911. Etudes paleontologiques sur le Nummulitique Alpin. Memoires Explique carte Geologiquedet. France, 1-439Google Scholar
  10. Calvès G, Clift PD, Inam A (2008) Anomalous subsidence on the rifted volcanic margin of Pakistan: no influence from Deccan plume. Earth Planet Sci Lett 272:231–239CrossRefGoogle Scholar
  11. Carmichael SM, Akhter S, Bennett JK, Fatimi MA, Hosein K, Jones RW, Longacre MB, Osborne MJ, Tozer RSJ (2009) Geology and the hydrocarbon potential of the Offshore Indus Basin, Pakistan. Pet Geosci 15:107–116CrossRefGoogle Scholar
  12. Cavelier C (1975) Le diachronisme de la zone a ericsonia subdisticha (Nannoplankton) et la position de la limite Eocene–Oligocene en Europe et en Amerique de Nord. Bull Bureau Recherché Geol Minieres 3(2):221–225Google Scholar
  13. Clift PD, Shimizu N, Layne GD, Gaedicke C, Schluter HU, Clark MK, Amjad S (2000) Fifty-five million years of Tibetan evolution recorded in the Indus fan. EOS Trans Am Geophys Union 81:277–281CrossRefGoogle Scholar
  14. Clift PD, Shimizu N, Layne GD, Gaedicke C, Schluter HU, Clark MK, Amjad S (2001) Development of the Indus fan and its significance for the erosional history of the Western Himalaya and Karakoram. GSA Bull 113(8):1039–1051CrossRefGoogle Scholar
  15. Clift PD, Kroon D, Gaedicke C, Craig J (2002a) Tectonic and climatic evolution of the Arabian Sea region: an introduction. Geol Soc Lond Spec Publ 195:1–5CrossRefGoogle Scholar
  16. Clift P, Gaedicke C, Edwards R, Lee J II, Hildebrand P, Amjad S, White RS, Schlueter HU (2002b) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Mar Geophys Res 23(3):223–245CrossRefGoogle Scholar
  17. Daley T, Alam Z (2002) Seismic stratigraphy of the Offshore Indus Basin. Geol Soc Lond Spec Publ 195:259–271CrossRefGoogle Scholar
  18. Davies AM (1930) The fossil fauna of the Samana Range and some neighbouring areas. Paleontogr India 15:67–79Google Scholar
  19. de la Harpe P (1877) Notes sur les nummulites des alpes occidentales. Actes Societe Helvetique sciences Naturelles, Paris 60:227–323Google Scholar
  20. Droz L, Bellaiche G (1991) Seismic facies and geologic evolution of the central portion of the Indus Fan. In: Weimer P, Link MH (eds) Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer, New York, pp 383–402CrossRefGoogle Scholar
  21. Edwards RA, Minshull TA, White AS (2000) Extension across the Indian-Arabian boundary; the Murray Ridge. Geophys J Int 142:461–477CrossRefGoogle Scholar
  22. Emery D, Myers KG (1996) Sequence stratigraphy. Blackwell Science Ltd, HobokenCrossRefGoogle Scholar
  23. Epting M (1980) Sedimentology of Miocene carbonate build ups, Central Luconia, Offshore Sarawaz. Bull Geol Soc Malaysia 12:17–30Google Scholar
  24. Farzadi P (2006) High resolution seismic stratigraphic analysis: an integrated approach to the subsurface geology of the SE Persian Gulf. Ph.D. Dissertation, University of Bergen, Norway, pp 1–66Google Scholar
  25. Fischer AG (1964) The Lofer cyclothems of the Alpine Triassic. In: Merriam DF (ed) Symposium on cyclic sedimentation. Kansas Geological Survey, Bulletin, vol 169, pp 107–149Google Scholar
  26. Gaedicke C, Prexl A, Schluter HU, Meyer H, Roeser H, Clift P (2002) Seismic stratigraphy and correlation of major regional unconformities in the Northern Arabian Sea. Geol Soc Lond Spec Publ 195:25–36CrossRefGoogle Scholar
  27. Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea level changes, cycle stacking patterns and the hierarchy forcing- examples from platform carbonates of the Alpine Triassic. Geol Soc Am Bull 102:535–562CrossRefGoogle Scholar
  28. Greenlee, S. M., Lehmann, P. L., 1993. Stratigraphic framework of productive carbonate buildups. In: Loucks, R. G., M Sarg, J. F. (eds.): Carbonate sequence stratigraphy- Recent development and applications. American Association of Petroleum Geologists,Memoir, 57, 43-62Google Scholar
  29. Hottinger L (1960) Recherches sur les Alvéolines Paléocènes et Eocènes. Mémoires Suisses Paleontol Zurich 75(76):1–242Google Scholar
  30. Hottinger L, Drobne K (1988) Alvéolines tertiaries: Quelques problèmes liés a la conception de l’ espèce. – Rev. Paléobiol Vol spéc 2:665–685Google Scholar
  31. Hottinger L, Schaub H (1960) Zur stufeneinteiling des Paleocaens und des Eocaens Einfuhrung der stufen Ilerdian und Bianitzien. Eclogae Geologicae Helvetiae 53:453–480Google Scholar
  32. Hottinger L, Lehmann R, Schaub H (1964) Données actuelles sur la biostartigraphie du Nummulitique Méditerranéen- Colloque sur le Paléogène, Bordeaux 1962- Mem. BRGM 28:611–652Google Scholar
  33. Jacob KH, Quittmeyer RL (1979) The Makran region of Pakistan and Iran: Trench-Arc system with active plate subduction. In: Farah A, DeJong A (eds) Geodynamics of Pakistan. Geological Survey Pakistan, Quetta, pp 305–317Google Scholar
  34. Kapellos C, Schaub H (1975) L’ Ilerdian dans les Alpes, dans les Pyrenees et en crime correlation des zones a grand foraminiferes et a nannoplaneton. Bull Soc Geol Fr 17:148–161CrossRefGoogle Scholar
  35. Kendall CG, St C, Schlager W (1981) Carbonates and relative changes in sea-level. Mar Geol 44:181–212CrossRefGoogle Scholar
  36. Kolla U, Coumes F (1987) Morphology, internal structure, seismic stratigraphy and sedimentation of Indus Fan. AAPG Bull 71:650–677Google Scholar
  37. McHargue TR, Webb JE (1986) Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan. AAPG Bull 70:161–180Google Scholar
  38. Penney SJB, Racey A (2004) Ecology of extant nummulitids and other larger benthic forminifera: applications in paleoenvironmental analysis. Earth Sci Rev 67(2004):219–265Google Scholar
  39. Pomar L (1991) Reef geometries, erosional surfaces and high frequency sea level changes, Upper Miocene Reef Complex, Mallorea, Spain. Sedimentology 38:243–269CrossRefGoogle Scholar
  40. Pomar L, Ward WC (1999) Reservoir scale heterogeneity in depositional packages and diagenetic packages on a reef-rimmed platform, Upper Miocene, Mallorca, Spain. Am Assoc Pet Geol Bull 83:1579–1773Google Scholar
  41. Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinarè-Turell J, Payros A, Apellaniz E, Caballero F (2009a) Correlation of the Thanetian–Ilerdian turnover of larger foraminifera and the Paleocene–Eocene thermal maximum: confirming evidence from the Campo area (Pyrenees, Spain). Geol Acta 7(1–2):161–175. doi: 10.1344/105.000000276 Google Scholar
  42. Pujalte V, Baceta JI, Shmitz B, Orue-Etxebarria X, Payros A, Bernnaola G, Apellaniz E, Caballero F, Robador A, Serra-Kiel J, Tosquella J (2009b) Redefinition of the Ilerdian Stage (early Eocene). Geol Acta 7(1–2):177–194. doi: 10.1344/105.000000268 Google Scholar
  43. Racey A (1995) Lithostratigraphy and larger forameiniferal (Nummulitid) biostratigraphy of the tertiary of northern Oman. Micropaleontology 41:1–123CrossRefGoogle Scholar
  44. Racey A (2001) A review of Eocene nummulited acuumulations: structure, formation and reservoir potential. J Pet Geol 24:79–100CrossRefGoogle Scholar
  45. Reading HG (1996) Sedimentary environments: processes, facies and stratigraphy, 3rd edn. Blackwell Science Ltd, London 688 Google Scholar
  46. Roychoudhry SC, Deshpande SV (1982) Regional distribution of carbonate facies, Bombay Offshore region, India. Am Assoc Pet Geol 66:1483–1496Google Scholar
  47. Schaub H (1981) Nummulites et assilines de la Téthys Paléogène taxinomie, phylogenèse biostratigraphie. Memoires Suisses Paleontol 104/105/106:1–236Google Scholar
  48. Scheibner C, Speijer RP (2009) Recalibration of the Tethyan shallow-benthic zonation across the Paleocene–Eocene boundary: the Egyptian record. Geol Acta 7(1–2):195–214Google Scholar
  49. Scheibner C, Speijer RP, Marzouk A (2005) Larger foraminiferal turnover during the Paleocene–Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493–496CrossRefGoogle Scholar
  50. Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Geol France 169(2):281–299Google Scholar
  51. Sheriff RE (1977) Limitations of resolution of seismic reflections and geologic data derivable from them. In: Payton CE (ed) Seismic stratigraphy—applications to hydrocarbon exploration. Memoir 26, American Association of Petroleum Geologists, Tulsa, Okla, pp 3–14Google Scholar
  52. Vail PR, Mitchum RM, Thompson S, III (1977b) Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level. In: Payton CE (eds) Seismic stratigraphic application to hydrocarbon exploration: AAPG Memoir, vol 26, pp 83–98Google Scholar
  53. Veeken PCH (2007) Seismic stratigraphy, basin analysis and reservoir characterization, vol 37. Handbook of Geophysical ExplorationGoogle Scholar
  54. Wandrey CJ, Law BE, Shah HA (2004) Sembar Goru/Ghazij composite total petroleum system, Indus and Sulaiman–Kirthar Geologic Provinces, Pakistan and India. USGS Bull 2208-CGoogle Scholar
  55. Warner MR (1987) Seismic reflections from the Moho- the effect of isostacy. Geophys J R Astron Soc 88:425–435CrossRefGoogle Scholar
  56. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Natasha Khan
    • 1
  • Khaista Rehman
    • 1
  • Sajjad Ahmad
    • 2
  • Jamil Khokher
    • 3
  • M. Iqbal Hajana
    • 4
  • M. Hanif
    • 1
  1. 1.National Center of Excellence in GeologyUniversity of PeshawarPeshawarPakistan
  2. 2.Department of GeologyUniversity of PeshawarPeshawarPakistan
  3. 3.MOL Pakistan Oil and Gas B.V.IslamabadPakistan
  4. 4.3D Seismic Lab, School of Earth and Ocean SciencesCardiff UniversityCardiffUK

Personalised recommendations