Marine Geophysical Research

, Volume 36, Issue 4, pp 263–279 | Cite as

Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling

  • Thomas Kalberg
  • Karsten Gohl
  • Graeme Eagles
  • Cornelia Spiegel
Original Research Paper


The Amundsen Sea Embayment of West Antarctica is of particular interest as it provides critical geological boundary conditions in better understanding the dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is whether this region has been affected by the West Antarctic Rift System, which is one of the largest in the world and the dominating tectonic feature in West Antarctica. Previous geophysical studies suggested an eastward continuation of this rift system into the Amundsen Sea Embayment. This geophysical study of the Amundsen Sea Embayment presents a compilation of data collected during two RV Polarstern expeditions in the Amundsen Sea Embayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived gravity data of the Amundsen Sea Embayment complete the dataset. Our 3-D gravity and magnetic models of the lithospheric architecture and development of this Pacific margin improve previous interpretations from 2-D models of the region. The crust-mantle boundary beneath the continental rise and shelf is between 14 and 29 km deep. The imaged basement structure can be related to rift basins within the Amundsen Sea Embayment, some of which can be interpreted as products of the Cretaceous rift and break-up phase and some as products of later propagation of the West Antarctic Rift System into the region. An estimate of the flexural rigidity of the lithosphere reveals a thin elastic thickness in the eastern embayment which increases towards the west. The results are comparable to estimates in other rift systems such as the Basin and Range province or the East African Rift. Based on these results, we infer an arm of the West Antarctic Rift System is superposed on a distributed Cretaceous rift province in the Amundsen Sea Embayment. Finally, the embayment was affected by magmatism from discrete sources along the Pacific margin of West Antarctica in the Cenozoic.


Potential field modelling Tectonics of West Antarctica West Antarctic Rift System Crustal architecture of the Amundsen Sea Embayment 



We are grateful to the master, crews and scientific teams of the RV Polarstern expeditions ANT-XXIII/4 (2006) und ANT-XXVI/3 (2010) for their support in collecting new geophysical data from the ASE. This project was funded by the Deutsche Forschungsgemeinschaft (DFG) under the DFG Priority Program ‘Antarctic Research’ with project number GO 724/13-1 and is affiliated with Work Package 3.2 of the AWI research program PACES-II.


  1. Barton P (1986) The relationship between seismic velocity and density of continental crust—a useful constraint? Geophys J R Astron Soc 87:195–208CrossRefGoogle Scholar
  2. Behrendt JC, LeMasurier WE, Cooper AK, Tessensohn F, Trefu A, Damaske D (1991) Geophysical studies of the west Antarctic rift arm. Tectonics 10:1257–1273. doi: 10.1029/91TC00868 CrossRefGoogle Scholar
  3. Bell RE, Blankenship DD, Finn CA, Morse DL, Scambos TA, Brozena JM, Hodge SM (1998) Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394(6688):58–62CrossRefGoogle Scholar
  4. Bingham RG, Ferracciolo F, King EC, Larter RD, Pritchard HD, Smith AM, Vaughan DG (2012) Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts. Nature 487:468–471. doi: 10.1038/nature11292 CrossRefGoogle Scholar
  5. Bradshaw JD (1991) Cretaceous dispersion of Gondwana: continental and oceanic spreading in the south-west Pacific–Antarctic sector. In: Thomson MRA et al (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 581–585Google Scholar
  6. Braitenberg C, Wienecke S, Ebbing J, Born W, Redfield T (2007) Joint gravity and isostatic analysis for basement studies. In: Proceedings of EGM 2007 international workshop, innovation in EM, Grav and Mag methods: a new perspective for exploration, extendend abstracts. Villa Orlandi, Capri, Italy, April 15–18Google Scholar
  7. Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res 96:20161–20178CrossRefGoogle Scholar
  8. Cande SC, Stock JM, Müller RD, Ishihara T (2000) Cenozoic motion between East and West Antarctica. Nature 404, 145–150; Palaeoecology 150:247–267Google Scholar
  9. Chaput J, Aster RC, Huerta A, Sun X, Lloyd A, Wiens D, Nyblade A, Anandakrishnan S, Winberry JP, Wilson T (2014) The crustal thickness of West Antarctica. J Geophys Res Solid Earth 119:378–395. doi: 10.1002/2013JB010642 CrossRefGoogle Scholar
  10. Cianciara B, Marcak H (1976) Interpretation of gravity anomalies by means of local power spectra. Geophys Prospect 24:273–286CrossRefGoogle Scholar
  11. Cochran JR, Tinto KJ, Bell RE (2015) Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate se award of West Antarctica. Geochem Geophys Geosyst. doi: 10.1002/2014GC005570 Google Scholar
  12. Cooper AH, Stagg H, Geist E (1991) Seismic stratigraphy and structure of Prydz Bay, Antarctica: implications from LEG 119 drilling. In: Proceedings of the ocean drilling program, scientific results, vol 119Google Scholar
  13. Coxall HK, Wilson PA, Palike H, Lear CH, Backman J (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57CrossRefGoogle Scholar
  14. Cunningham AP, Larter RD, Barker PF, Gohl K, Nitsche FO (2002) Tectonic evolution of the Pacific margin of Antarctica: 2. Structure of Late Cretaceous—early Tertiary plate boundaries in the Bellingshausen Sea from seismic reflection and gravity data. J Geophys Res 107(B12):2346. doi: 10.1029/2002JB001897 CrossRefGoogle Scholar
  15. Dalziel IWD, Elliot DH (1982) West Antarctica: problem child of Gondwanaland. Tectonics 1:3–19CrossRefGoogle Scholar
  16. Davy B, Wood R (1994) Gravity and magnetic modelling of the Hikurangi Plateau. Mar Geol 118:139–151CrossRefGoogle Scholar
  17. De Conto R, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  18. Denk A (2011) Analysis of ship-borne and helicopter-borne magnetic data in the Amundsen Sea, West Antarctica. Diploma Thesis, Universität KölnGoogle Scholar
  19. Domack EW, Ishman S (1992) Magnetic susceptibility of Antarctic glacial marine sediments. Antarct J Unit States 27(5):64Google Scholar
  20. Dorman LM, Lewis BTR (1970) Experimental isostasy: 1. Theory of the determination of the earth’s isostatic response to a concentrated load. J Geophys Res 75:3357–3365CrossRefGoogle Scholar
  21. Eagles G, Jokat W (2014) Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611:28–50. doi: 10.1016/j.tecto.2013.11.021 CrossRefGoogle Scholar
  22. Eagles G, Gohl K, Larter RD (2004a) High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic margin. Geochem Geophy Geosyst. doi: 10.1029/2003GC000657 Google Scholar
  23. Eagles G, Gohl K, Larter RD (2004b) Life of the Bellingshausen plate. Geophys Res Lett 31. doi: 10.1029/2003GL019127
  24. Eagles G, Larter RD, Gohl K, Vaughan APM (2009) West Antarctic Rift System in the Antarctic Peninsula. Geophys Res Lett 36:L21305. doi: 10.1029/2009GL040721 CrossRefGoogle Scholar
  25. Ebinger CJ, Deino AL, Drake RE, Tesna AL (1989) Chronology of volcanism and rift basin propagation: rungwe volcanic province, East Africa. J Geogr Res 94:15785–157803Google Scholar
  26. Finn CA, Müller RD, Panter KS (2005) A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem Geophys Geosyst 6:Q02005. doi: 10.1029/2004GC000723 CrossRefGoogle Scholar
  27. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Riviera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere Discuss 6:4305–4361CrossRefGoogle Scholar
  28. Gohl K (2012) Basement control on past ice sheet dynamics in the Amundsen Sea Embayment, West Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 335–336:35–41. doi: 10.1016/j.palaeo.2011.02.022 CrossRefGoogle Scholar
  29. Gohl K, Teterin D, Eagles G, Netzeband G, Grobys J, Parsiegla N, Schlüter P, Leinweber V, Larter RD, Uenzelmann-Neben G, Udintsev GB (2007) Geophysical survey reveals tectonic structures in the Amundsen Sea Embayment, West Antarctica. In: Cooper AK, Raymond CR, et al. (eds) Proceedings of the 10th international symposium of Antarctic earth sciences. USGS Open-File Report 2007-1047. doi: 10.3133/of2007-1047.srp047
  30. Gohl K, Denk A, Eagles G, Wobbe F (2013a) Deciphering tectonic phases of the Amundsen Sea Embayment shelf, West Antarctica, from a magnetic anomaly grid. Tectonophysics 585:113–123. doi: 10.1016/j.tecto.2012.06.036 CrossRefGoogle Scholar
  31. Gohl K, Uenzelmann-Neben G, Larter RD, Hillenbrand C-D, Hochmuth K, Kalberg T, Weigelt E, Davy B, Kuhn G, Nitsche F-O (2013b) Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: evidence for a dynamic West Antarctic Ice Sheet. Mar Geol 344(115–131):2013. doi: 10.1016/j.margeo.2013.06.011 Google Scholar
  32. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling. In: Gravity and magnetics, Geophysics 53(8):1096–1108Google Scholar
  33. Granot R, Cande SC, Stock JM, Damaske D (2013) Revised Eocene-Oligocene kinematics for the West Antarctic Rift System. Geophys Res Lett 40:279–284. doi: 10.1029/2012GL054181 Google Scholar
  34. Grobys JWG, Gohl K, Eagles G (2008) Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates. Geochem Geophy Geosyst 9(1):Q01005. doi: 10.1029/2007GC001691 CrossRefGoogle Scholar
  35. Grunow AM, Kent DV, Dalziel IWD (1991) New paleomagnetic data from Thurston Island: Implications for the tectonics of West Antarctica and Weddell Sea opening. J Geophys Res 96:17935–17954CrossRefGoogle Scholar
  36. Hay WW (1996) Tectonics and Climate. Geol Rundsch 85:409–437CrossRefGoogle Scholar
  37. Hochmuth K, Gohl K (2013) Glaciomarine sedimentation dynamics of the Abbot glacial trough of the Amundsen Sea Embayment shelf, West Antarctica. In: Hambrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JL, Tranter M (eds) In: Antarctic palaeoenvironments and earth-surface processes, vol 381. Geological Society, Special Publications, LondonGoogle Scholar
  38. Jordan TA, Ferraccioli F, Vaughan DG, Holt JW, Corr H, Blankenship DD, Diehl TM (2010) Aerogravity evidence for major crustal thinning under the Pine Island Glacier region (West Antarctica). Geol Soc Am Bull 122:714–726. doi: 10.1130/B26417.1 CrossRefGoogle Scholar
  39. Kalberg T, Gohl K (2014) The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data. Geophys J Int 198(1):327–341CrossRefGoogle Scholar
  40. Karner GD, Watts AB (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J Geophys Res 88:10449–10477CrossRefGoogle Scholar
  41. Karner GD, Studinger M, Bell R (2005) Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica. Earth Planet Sci Lett 235:577–596CrossRefGoogle Scholar
  42. Kipf A, Hauff F, Werner R, Gohl K, van den Bogaard P, Hoernle K, Maicher D, Klügel A (2014) Seamounts off the West Antarctic margin: a case of non-hotspot intraplate volcanism. Gondwana Res 25:1660–1679. doi: 10.1016/ CrossRefGoogle Scholar
  43. Larter RD, Cunningham AP, Barker PF, Gohl K, Nitsche FO (2002) Tectonic evolution of the Pacific margin of Antarctica 1. Late Cretaceous tectonic reconstructions. J Geophys Res 107(B12):2345CrossRefGoogle Scholar
  44. Lawver LA, Gahagan LM, Dalziel IWD (2011) A different look at gateways: Drake passage and Australia/Antarctica. In: Anderson JB, Wellner JS (eds) Tectonic, climatic, and cryospheric evolution of the Antarctic Peninsula, Special Publication No. 063, American Geophysical Union, p 5–33. doi:  10.1029/2010SP001017
  45. LeMasurier WE (2008) Neogene extension and basin deepening in the West Antarctic rift inferred from comparisons with the East African rift and other analogs. Geology 36:247–250. doi: 10.1130/G24363A.1 CrossRefGoogle Scholar
  46. LeMasurier WE, Landis CA (1996) Mantle-Plume, activity recorded by low relief erosion surfaces in West Antarctica and New Zealand. Geol Soc Am Bull 108:1450–1466CrossRefGoogle Scholar
  47. Lindow J, Spiegel C, Johnson J, Lisker F, Gohl K (2011) Constraining the latest stage exhumation of Marie Byrd and Ellsworth Land, West Antarctica. In: 11th international symposium on Antarctic earth science, Edinburgh, ScotlandGoogle Scholar
  48. Lowry AR, Smith RB (1994) Flexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topography. J Geophys Res 99:20123–20140CrossRefGoogle Scholar
  49. Luyendyk BP, Sorlien CC, Wilson DS, Bartek LR, Siddoway CH (2001) Structural and tectonic evolution of the Ross Sea rift in the Cape Colbeck region, Eastern Ross Sea, Antarctica. Tectonics 20:933–959CrossRefGoogle Scholar
  50. Luyendyk B, Wilson DS, Siddoway CS (2003) Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctic: crustal structure and tectonic development. Geochem Geophys Geosyst. doi: 10.1029/2002GC000462 Google Scholar
  51. Mackenzie GD, Thybo H, Maguire PKH (2005) Crustal velocity structure across the Main Ethiopian Rift: results from two-dimensional wide-angle seismic modelling. Geophys J 162(3):994–1006CrossRefGoogle Scholar
  52. Maus S, Macmillan S, McLean S, Hamilton B, Thomson B, Nair M, Rollins C (2010) The US/UK world magnetic model for 2010–2015, NOAA Technical Report NESDIS/NGDCGoogle Scholar
  53. Mayes CL, Lawver LA, Sandwell DT (1990) Tectonic history and new isochron chart of the South Pacific. J Geophys Res 95:8543–8567CrossRefGoogle Scholar
  54. McAdoo DC, Laxon S (1999) Antarctic tectonics: constraints from an ERS-1 satellite marine gravity field. Science 276:556–560CrossRefGoogle Scholar
  55. Mortimer et al (2006) New constraints on the age and evolution of the Wishbone Ridge, southwest Pacific Cretaceous microplates, and Zealandia-West Antarctica breakup. Geology 34(3):185–188. doi: 10.1130/G22168.1 CrossRefGoogle Scholar
  56. Müller RD, Gohl K, Cande SC, Goncharov A, Golynsky AV (2007) Eocene to Miocene geometry of the West Antarctic Rift System. Aust J Earth Sci 54:1033–1045. doi: 10.1080/08120090701615691 CrossRefGoogle Scholar
  57. Nitsche FO, Jacobs SS, Larter RD, Gohl K (2007) Bathymetry of the Amundsen Sea continental shelf: implications for geology, oceanography, and glaciology. Geochem Geophys Geosyst. doi: 10.1029/2007GC001694 Google Scholar
  58. Pérez-Gussinyé M, Metois M, Fernández M, Vergés J, Fullea J, Lowry A (2009) Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet Sci Lett 287(1–2):152–167CrossRefGoogle Scholar
  59. Rocchi S, LeMasurier WE, Di Vincenzo G (2006) Oligocene to Holocene erosion and glacial history in MBL, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geol Soc Am Bull 118:991–1005CrossRefGoogle Scholar
  60. Sanger EA, Glen JMG (2003) Density and magnetic susceptibility values for rocks in the Talkeetna Mountains and adjacent region, South-Central Alaska. U.S. Geological Survey Open-File Report 03–268Google Scholar
  61. Schaeffer AJ, Lebedev S (2013) Global shear-speed structure of the upper mantle and transition zone. J. Int, Geophys. doi: 10.1093/gji/ggt095 Google Scholar
  62. Shapiro NM, Ritzwoller MH (2004) Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica, Earth Planet. Sci. Lett. 223:213–224Google Scholar
  63. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302CrossRefGoogle Scholar
  64. Sterritt VA (2006) Understanding physical property: mineralogy relationships in the context of geologic processes in the ultramafic rock-hosted mineral deposit environment : aiding interpretation of geophysical data. Retrospective Theses and Dissertations, 1919–2007, Earth and Ocean Sciences Theses and DissertationsGoogle Scholar
  65. Storey BC (1991) The crustal blocks of West Antarctica within Gondwana: reconstruction and break-up model. In: Thomson MRA, Crane JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  66. Studinger MS (2001) Interpretation und Analyse von Potentialfelddaten im Weddellmeer, Antarktis: der Zerfall des Superkontinents Gondwana. Dissertation. University of BremenGoogle Scholar
  67. Syberg FJR (1972) A Fourier method for the regional-residual problem of potential fields. Geophys Prospect 20:47–75CrossRefGoogle Scholar
  68. Tessensohn F, Wörner G (1991) The Ross Sea rift system (Antarctica). Structure, evolution and analogues. In: Thompson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 273–277Google Scholar
  69. Trey H, Cooper AK, Pellis G, Della Vedova B, Cochrane G, Brancolini G, Makris J (1999) Transect across the West Antarctic Rift System in the Ross Sea, Antarctica. Tectonophysics 301:61–74CrossRefGoogle Scholar
  70. Trua T, Deniel C, Mazzuoli R (1999) Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER), geochemical and isotopoic (SR, ND, Pb) evidence. Chem Geol 155:201–231CrossRefGoogle Scholar
  71. Uenzelmann-Neben G, Gohl K (2012) Amundsen Sea sediment drifts: archives of modifications in oceanographic and climatic conditions. Mar Geol 299–302:51–62. doi: 10.1016/j.margeo.2011.12.007 CrossRefGoogle Scholar
  72. Uenzelmann-Neben G, Gohl K (2014) Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: indications from the distribution of sedimentary sequences. Global Planet Change 120:92–104. doi: 10.1016/j.gloplacha.2014.06.004 CrossRefGoogle Scholar
  73. Uenzelmann-Neben G, Gohl K, Larter RD, Schlüter P (2007) Differences in ice retreat across Pine Island Bay, West Antarctica, since the Last Glacial Maximum: Indications from multichannel seismic reflection data. In: Cooper AK, Raymond CR, et al. Proceedings of the 10th ISAES. USGS Open-File Report 2007-1047. doi: 10.3133/of2007-1047.srp084
  74. Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge, p 458Google Scholar
  75. Weigelt E, Gohl K, Uenzelmann-Neben G, Larter RD (2009) Late Cenozoic ice sheet cyclicity in the western Amundsen Sea Embayment—evidence from seismic records. Global Planet Change 69:162–169CrossRefGoogle Scholar
  76. Winberry JP, Anandakrishnan S (2004) Crustal structure of the West Antarctic Rift System and Marie Byrd Land hotspot. Geology 32(11):977–980. doi: 10.1130/G20768.1 CrossRefGoogle Scholar
  77. Wobbe F, Gohl K, Chambord A, Sutherland R (2012) Structure and breakup history of the rifted margin of West Antarctica in relation to Cretaceous separation from Zealandia and Bellingshausen plate motion. Geochem Geophys Geosyst 13:Q04W12. doi: 10.1029/2011GC003742 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thomas Kalberg
    • 1
  • Karsten Gohl
    • 1
  • Graeme Eagles
    • 1
  • Cornelia Spiegel
    • 2
  1. 1.Department of GeosciencesAlfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhavenGermany
  2. 2.Department of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations