Marine Geophysical Researches

, Volume 26, Issue 1, pp 17–28 | Cite as

Seismic structure and tectonics of the Shackleton Fracture Zone (Drake Passage, Scotia Sea)

  • Riccardo Geletti
  • Emanuele Lodolo
  • Anatoly A. Schreider
  • Alina Polonia


The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.


Shackleton Fracture Zone western Scotia Sea seismic and magnetic data tectonic evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldaya, F., Maldonado, A. 1996Tectonics of the triple junction at the southern end of the Shackleton Fracture Zone (Antarctic Peninsula)Geo-Mar. Lett.16279286CrossRefGoogle Scholar
  2. Barker, P.F., Burrell, J. 1977The opening of Drake PassageMar. Geol.251534CrossRefGoogle Scholar
  3. Bonatti, E. 1976Serpentinite protrusions in the oceanic crustEarth Planet. Sci. Lett.32107113Google Scholar
  4. Bonatti, E., Ligi, M., Brunelli, D., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., Ottolini, L. 2003Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphereNature423499505CrossRefGoogle Scholar
  5. Bonatti, E., Ligi, M., Gasperini, L., Peyve, A., Raznitsin, Y., Chen, Y.J. 1994Transform migration and vertical tectonics at the Romanche Fracture Zone, Equatorial AtlanticJ. Geophys. Res.9921,77921,802CrossRefGoogle Scholar
  6. Cande, S.C., Kent, D.V. 1995Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and CenozoicJ. Geophys. Res.10060936095CrossRefGoogle Scholar
  7. Cunningham, W.D., Dalziel, I.W.D., Lee, T.-Y., Lawver, L.A. 1995Southernmost South America–Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc regionJ. Geophys. Res.10082578266CrossRefGoogle Scholar
  8. Galindo-Zaldívar, J., Jabaloy, A., Maldonado, A., Sanzde Galdeano, C. 1996Continental fragmentation along the South Scotia Ridge transcurrent plate boundary (NE Antarctic Peninsula)Tectonophysics258275301Google Scholar
  9. Galindo-Zaldívar, J., Jabaloy, A., Maldonado, A., Martinez-Martinez, J.M., Sanzde Galdeano, C., Somoza, L., Surinach, E. 2000Deep crustal structure of the area of intersection between the Shackleton Fracture Zone and the West Scotia Ridge (Drake Passage, Antartica)Tectonophysics320123139Google Scholar
  10. Jakubowicz, H. 1990A simple efficient method of dip-move-out correctionGeophys. Prospect.38221245Google Scholar
  11. Kastens, K., Bonatti, E., Caress, D., Carrara, G., Dauteuil, O., Frueh-Green, G., Ligi, M., Tartarotti, P. 1998The Vema Transverse Ridge (Central Atlantic)Mar. Geophys. Res.20533556CrossRefGoogle Scholar
  12. Kim, Y., Jin, Y.K. and Nam, S.H., 1997, Crustal structure of the Shackleton Fracture Zone in the Southern Drake Passage, Antarctica. in Ricci, C.A., (ed.), The Antarctic Region: Geological Evolution and Processes pp. 661–667, Terra Antartica Pub., Siena.Google Scholar
  13. Klepeis, K.A., Lawver, L.A. 1996Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West AntarcticaJ. Geophys. Res.10120,21120,231CrossRefGoogle Scholar
  14. Langel, R.A. 1995International Geomagnetic Reference Field, 1991 RevisionEOS Trans. AGU76184Google Scholar
  15. Larter, R.D., Barker, P.F. 1991Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plateJ. Geophys. Res.961958319607Google Scholar
  16. Livermore, R., McAdoo, D., Marks, K. 1994Scotia Sea tectonics from high-resolution satellite gravityEarth Planet. Sci. Lett.123255268CrossRefGoogle Scholar
  17. Lodolo, E., Coren, F., Schreider, A.A., Ceccone, G. 1997Geophysical evidence of a relict oceanic crust in the South-western Scotia SeaMar. Geophys. Res.19439450CrossRefGoogle Scholar
  18. Lodolo E., Menichetti M., Bartole R., Ben-Avraham Z., Tassone A. and Lippai H. (2003). Magallanes-Fagnano continental transform fault (Tierra del Fuego, southernmost South America), Tectonics 22(6), 1076, doi:10.1029/2003TC001500.Google Scholar
  19. Maldonado, A., Balanya, J.C., Barnolas, A., Galindo-Zaldívar, J., Hernandez, J., Jabaloy, A., Livermore, R., Martinez-Martinez, J.M., Rodriguez-Fernandez, J., Galdeano, C.S., Somoza, L., Surinach, E., Viseras, C. 2000Tectonic of an extinct ridge-transform intersection, Drake Passage (Antarctica)Mar. Geophys. Res.214368CrossRefGoogle Scholar
  20. Nowlin, W.D., Zenk, W. 1988Westward bottom currents along the margin of the South Shetland Island ArcDeep Sea Res.35269301Google Scholar
  21. Parsons, B., Sclater, J.C. 1977An analysis of the variation of ocean floor bathymetry and heat flow with ageJ. Geophys. Res.82803827Google Scholar
  22. Pelayo, A.M., Wiens, D.A. 1989Seismotectonics and relative motions in the Scotia Sea regionJ. Geophys. Res.9472937320CrossRefGoogle Scholar
  23. Pockalny, R.A. 1997Evidence of transpression along the Clipperton Transform: implications for processes of plate boundary reorganizationEarth Planet. Sci. Lett.146449464CrossRefGoogle Scholar
  24. Sandwell, D.T., Smith, W.H.F. 1997Marine gravity anomaly from Geosat and ERS-1 satellite altimetryJ. Geophys. Res.10210,03910,054CrossRefGoogle Scholar
  25. Schreider, A.A., Bulychev, A.A., Galindo-Zaldívar, J., Maldonado, A., Gilod, D.A. 2003The Phoenix ridge geo-chronology in the South PacificOkeanologia43279285(in Russian)Google Scholar
  26. Stolt, R.H. 1978Migration by Fourier transformGeophysics432348CrossRefGoogle Scholar
  27. Tectonic Map of the Scotia Arc, 1985, BAS Misc (3), Cambridge, British Antarctic Survey.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Riccardo Geletti
    • 1
  • Emanuele Lodolo
    • 1
  • Anatoly A. Schreider
    • 2
  • Alina Polonia
    • 3
  1. 1.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)TriesteItaly
  2. 2.P.P. Shirshov Institute of OceanologyRussian Academy of ScienceMoscowRussia
  3. 3.Istituto di Scienze Marine (CNR)BolognaItaly

Personalised recommendations