Advertisement

Marine Geophysical Researches

, Volume 24, Issue 3–4, pp 171–205 | Cite as

Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific

  • Barry W. Eakins
  • Peter F. Lonsdale
Article

Abstract

The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 × 105 km2 to 1.2 × 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17–15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8–6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ∼400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a ‘northern annex’ to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15–8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5°/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate motion. Some structures of the Bauer microplate boundary, such as deep rift valleys and a broad zone of thrust-faulted lithosphere, are, however, similar to those observed around the smaller, active microplates. Analysis of how the Bauer microplate was captured when coupling to the Pacific plate was reduced invites speculation on why risecrest microplates eventually lose their independence.

Keywords

annexation Bauer microplate East Pacific Rise Galapagos Rise microplate kinematics plate reconstructions rifting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. N., Halunen, A. J.,Jr. 1974Implications of heat flow for metallogenesis in the Bauer DeepNature251473475Google Scholar
  2. Anderson, R. N., Sclater, J. G. 1972Topography and evolution of the East Pacific Rise between 5° S and 20° SEarth Planet. Sci. Lett.14433441CrossRefGoogle Scholar
  3. Ault J. P. 1946, The Captain’s Report, in Sverdrup, H. U., Soule, F. M., Fleming, J. A. and Ennis, C. C. (eds.), Scientific Results of Cruise VII of the Carnegie during 1928-1929, vol. IV, Carnegie Institution of Washington, IV, 1–28Google Scholar
  4. Bird, R. T., Naar, D. F. 1994Intratransform origins of mid-ocean ridge microplatesGeology22987990CrossRefGoogle Scholar
  5. Bird, R. T., Naar, D. F., Larson, R. L., Searle, R. C., Scotese, C. R. 1998Plate tectonic reconstructions of the Juan Fernandez microplate: Transformation from internal shear to rigid rotationJ. Geophys. Res.10370497067CrossRefGoogle Scholar
  6. Blais, A., Gente, P., Maia, M., Naar, D. F. 2002A history of the Selkirk paleomicroplateTectonophysics359157169CrossRefGoogle Scholar
  7. Campsie, J., Johnson, G. L., Rasmussen, M. H., Laursen, J. 1984Dredged basalts from the western Nazca Plate and the evolution of the East Pacific RiseEarth Planet. Sci. Lett.68271285CrossRefGoogle Scholar
  8. Cande, S. C., Kent, D. V. 1995Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and CenozoicJ. Geophys. Res.10060936095CrossRefGoogle Scholar
  9. Cande, S. C., Raymond, C. A., Stock, J., Haxby, W. F. 1995Geophysics of the Pitman fracture zone and Pacific-Antarctic Plate motions during the CenozoicScience270947953Google Scholar
  10. Cochran, J. R., Goff, J. A., Malinverno, A., Fornari, D. J., Keeley, C., Wang, X. 1993Morphology of a ‘superfast’ mid-ocean ridge crest and flanks: the East Pacific Rise, 7° S–9° SMarine Geophys. Res.156575CrossRefGoogle Scholar
  11. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S. 1994Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motionsGeophys. Res. Lett.2121912194CrossRefGoogle Scholar
  12. Duncan, R. A. and Clague, D. A., 1985, Pacific plate motion recorded by linear volcanic chains, in Nairn, A. E. M., Stehli, F. G. and Uyeda, S. (eds.), The Pacific Ocean, Plenum Press, 89–121.Google Scholar
  13. Engeln, J.F., Stein, S., Werner, J., Gordon, R.G. 1988Microplate and shear zone models for oceanic spreading center reorganizationsJ. Geophys. Res.9328392856Google Scholar
  14. Francheteau, J., Yelles-Chaouche, A., Craig, H. 1987The Juan Fernandez Microplate north of the Pacific-Nazca-Antarctic plate junction at 35° SEarth Planet. Sci. Lett.86253268CrossRefGoogle Scholar
  15. Goff, J. A., Cochran, J. R. 1996The Bauer Scarp ridge jump: a complex tectonic sequence revealed in satellite altimetryEarth Planet. Sci. Lett.1412133CrossRefGoogle Scholar
  16. Goff, J. A., Fornari, D. J., Cochran, J. R., Keeley, C., Malinverno, A. 1993Wilkes transform system and ‘nannoplate’Geology21623626CrossRefGoogle Scholar
  17. Handschumacher, D. W., 1976, Post-Eocene plate tectonics of the eastern Pacific, in Sutton, G. H., Manghnani, M. H. and Moberly, R. (eds.), The Geophysics of the Pacific Ocean Basin and its Margins, American Geophysical Union, Geophysical Monograph 19, 177–202.Google Scholar
  18. Handschumacher, D. W., Okamura, S. T. and Wong, P. K., 1975, Magnetic and bathymetric profiles from the central and southeastern Pacific: 10° N–45° S, 70° W–150° W, Hawaii Institute of Geophysics, 175 pp.Google Scholar
  19. Herron, E. M. 1972Sea-floor spreading and the Cenozoic history of the east-central PacificGeol. Soc. Am. Bull.8316711692Google Scholar
  20. Hey, R. 1977Tectonic evolution of the Cocos-Nazca spreading centerGeol. Soc. Am. Bull.8814041420CrossRefGoogle Scholar
  21. Hooft, E., Kleinrock, M., Ruppel, C. 1995Rifting of oceanic crust at Endeavor Deep on the Juan Fernandez microplateMarine Geophys. Res.17251273CrossRefGoogle Scholar
  22. Huchon, P., Bourgois, J. 1990Subduction-induced fragmentation of the Nazca plate off Peru: Mendana fracture zone and Trujillo Trough revisitedJ. Geophys. Res.9584198436Google Scholar
  23. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., Wilson, D. S. 1999Chronology, causes and progression of the Messinian salinity crisisNature400652655CrossRefGoogle Scholar
  24. Larson, R. L., Searle, R. C., Kleinrock, M. C., Schouten, H., Bird, R. T., Naar, D. F., Rusby, R. I., Hooft, E. E., Lasthiotakis, H. 1992Roller-bearing tectonic evolution of the Juan Fernandez microplateNature356571576CrossRefGoogle Scholar
  25. Liu, Z. 1996, The Origin and Evolution of the Easter Seamount Chain, Doctoral thesis, University of South Florida, St. Petersburg, 266 pp.Google Scholar
  26. Lonsdale, P. 1988Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctionsJ. Geophys. Res.9313,55113,574Google Scholar
  27. Lonsdale, P. 1989aThe rise flank trails left by migrating offsets of the equatorial East Pacific Rise axisJ. Geophys. Res.94713743Google Scholar
  28. Lonsdale, P. 1989Segmentation of the Pacific-Nazca spreading center, 1° N–20° SJ. Geophys. Res.9412,19712,225Google Scholar
  29. Lonsdale, P. 1995Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of CaliforniaMarine Geophys. Res.17323359CrossRefGoogle Scholar
  30. Macdonald, K. C., Fox, P. J., Perram, L. J., Eisen, M. F., Haymon, R. M., Miller, S. P., Carbotte, S. M., Cormier, M. H., Shor, A. N. 1988A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuitiesNature335217225CrossRefGoogle Scholar
  31. Mammerickx, J., Anderson, R. N., Menard, H. W., Smith, S. M. 1975Morphology and tectonic evolution of the east-central PacificGeol. Soc. Am. Bull.86111117CrossRefGoogle Scholar
  32. Mammerickx, J., Herron, E., Dorman, L. 1980Evidence for two fossil spreading ridges in the southeast PacificGeol. Soc. Am. Bull.91263271CrossRefGoogle Scholar
  33. Mammerickx, J., Naar, D. F., Tyce, R. L. 1988The Mathematician PaleoplateJ. Geophys. Res.9330253040Google Scholar
  34. Mammerickx, J., Sandwell, D. 1986Rifting of old oceanic lithosphereJ. Geophys. Res.9119751988Google Scholar
  35. Martinez, F., Naar, D. F., Reed, T. B.,IV, Hey, R. N. 1991Three-dimensional SeaMARC II, gravity, and magnetics study of large-offset rift propagation at the Pito Rift, Easter microplateMarine Geophys. Res.13255285CrossRefGoogle Scholar
  36. Mayes, C. L., Lawver, L. A., Sandwell, D. T. 1990Tectonic history and new isochron chart of the South PacificJ. Geophys. Res.9585438567Google Scholar
  37. McKenzie, D., Jackson, J. 1986A block model of distributed deformation by faultingJ. Geol. Soc., London143349353Google Scholar
  38. Menard, H. W., Atwater, T. 1969Origin of fracture zone topographyNature22210371040Google Scholar
  39. Menard, H. W., Chase, T. E., Smith, S. M. 1964Galapagos Rise in the southeastern PacificDeep Sea Research11233242Google Scholar
  40. Naar, D. F., Hey, R. N. 1991Tectonic evolution of the Easter microplateJ. Geophys. Res.9679617993Google Scholar
  41. Naar, D. F., Martinez, F., Hey, R. N., Reed, T. B.,IV, Stein, S. 1991Pito rift: How a large-offset rift propagatesMarine Geophys. Res.13287309CrossRefGoogle Scholar
  42. Norabuena, E. O., Dixon, T. H., Stein, S., Harrison, C. G. A. 1999Decelerating Nazca-South America and Nazca-Pacific plate motionsGeophys. Res. Lett.2634053408CrossRefGoogle Scholar
  43. Pardo-Casas, F., Molnar, P. 1987Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous timeTectonics6233248Google Scholar
  44. Rea, D. K. 1976Changes in the axial configuration of the East Pacific Rise near 6° S during the past 2 m.y.J. Geophys. Res.8114951504Google Scholar
  45. Rea, D. K. 1978Evolution of the East Pacific Rise between 3° S and 13° S since the Middle MioceneGeophys. Res. Lett.5561564Google Scholar
  46. Rea, D. K., 1981, Tectonics of the Nazca-Pacific divergent plate boundary, in Kulm, L. D., Dymond, J., Dasch, E. J. and Hussong, D. M. (eds.), Nazca Plate; Crustal Formation and Andean Convergence, Geological Society of America, Memoir 154, 27–62.Google Scholar
  47. Rea, D. K. and Malfait, B., 1974, Geologic evolution of the northern Nazca plate, Geology, 317–320.Google Scholar
  48. Rusby, R. I., Searle, R. C. 1993Intraplate thrusting near the Easter microplateGeology21311314CrossRefGoogle Scholar
  49. Rusby, R. I., Searle, R. C. 1995A history of the Easter microplate, 5.25 Ma to presentJ. Geophys. Res.10012,61712,640Google Scholar
  50. Sandwell, D. T., Smith, W. H. F. 1997Marine gravity anomaly from Geosat and ERS 1 satellite altimetryJ. Geophys. Res.10210,03910,054Google Scholar
  51. Scheirer, D. S., Macdonald, K. C., Forsyth, D. W., Shen, Y. 1996Abundant seamounts of the Rano Rahi Seamount Field near the southern East Pacific Rise, 15S to 19SMarine Geophys. Res.181352CrossRefGoogle Scholar
  52. Schouten, H., Klitgord, K. D., Gallo, D. G. 1993Edge-driven microplate kinematicsJ. Geophys. Res.9866896701Google Scholar
  53. Searle, R. C. 1983Multiple, closely spaced transform faults in fast-slipping fracture zonesGeology11607610CrossRefGoogle Scholar
  54. Searle, R. C., Bird, R. T., Rusby, R. I., Naar, D. F. 1993The development of two oceanic microplates: Easter and Juan Fernandez microplates, East Pacific RiseJ. Geol. Soc., London150965976Google Scholar
  55. Searle, R. C., Francheteau, J., Cornaglia, B. 1995New observations on mid-plate volcanism and the tectonic history of the Pacific Plate, Tahiti to Easter MicroplateEarth Planet. Sci. Lett.131395421CrossRefGoogle Scholar
  56. Searle, R. C., Hey, R. N. 1983Gloria observations of the propagating rift at 95.5°~W on the Cocos-Nazca spreading centerJ. Geophys. Res.8864336447Google Scholar
  57. Sonder, L., Pockalny, R. 1999Anomalously rotated abyssal hills along active transforms: Distributed deformation of oceanic lithosphereGeology2710031006CrossRefGoogle Scholar
  58. Tebbens, S. F., Cande, S. C. 1997Southeast Pacific tectonic evolution from early Oligocene to PresentJ. Geophys. Res.10212,06112,084Google Scholar
  59. Warsi, W. E., Hilde, T. W. C., Searle, R. C. 1983Convergence structures of the Peru Trench between 10° S and 14° STectonophysics99313329CrossRefGoogle Scholar
  60. Weissel, J. K., Karner, G. D. 1989Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extensionJ. Geophys. Res.9413,91913,950Google Scholar
  61. Yeats, R. S. and Heath, G. R., 1976, Bathymetry and structure of the Bauer Deep around DSDP Site 319, in Yeats, R. S. and Hart, S. R. (eds.), Initial Reports of the Deep Sea Drilling Project, U.S. Govt. Printing Office, 34, 157–162.Google Scholar
  62. Zukin, J., Francheteau, J. 1990A tectonic test of instantaneous kinematics of the Easter microplateOceanologica Acta special10183198Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Now at Volcano Hazards ProgramU.S. Geological SurveyMenlo ParkUSA
  2. 2.Marine Physical Laboratory, Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations