A dielectric elastomer membrane integrated with protective passive layers under explicit and implicit prestretch

Abstract

Dielectric elastomers (DEs) are a category of soft electro-active materials that can be used as sensors, actuators and generators. In order to provide protection, insulation layers are essential and thicker layers can lead to stronger protecion. However, the presence of the additional layers can certainly constrain the deformation of DEs. Thus a balance between protection and performance is needed. Prestretch is widely used for the enhancement of actuation performance. Thus the DE membrane integrated with protective passive layers is studied here, focusing on the effect of the coexistence of the prestretch and passive layers. We identify two approaches of prestretches, where the DE membrane and protective passive layers can be explicitly prestretched by external loads, or the DE membrane can be implicitly prestretched by solely protective passive layers. For the latter approach, it does not require additional components such as rigid clamps or dead weights. We then establish a coupled model for the DE membrane and passive layers. The effects of the prestretches and passive layers on the electromechanical behavior and voltage-induced deformation of the DE membrane are then revealed numerically. Furthermore, we theoretically study the detailed effects of specific mechanical properties of passive layers such as the thickness and shear modulus, which are useful for the design of the system. This theoretical research thus sheds insights for the design of dielectric elastomer applications where both safety and performance are required.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. An, S.Q., Zou, H.L., Deng, Z.C.: Control instability and enhance performance of a dielectric elastomer balloon with a passive layer. J. Phys. D Appl. Phys. 52, 195301 (2019)

    Article  Google Scholar 

  2. Anderson, I., Gisby, T., McKay, T., Brien, B., Calius, E.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Article  Google Scholar 

  3. Antoniadis, I.A., Venetsanos, D.T., Papaspyridis, F.G.: Diesysdynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges. Smart Mater. Struct. 22, 104007 (2013)

    Article  Google Scholar 

  4. Bai, Y., Jiang, Y., Chen, B., Chiang Foo, C., Zhou, Y., Xiang, F., Zhou, J., Wang, H., Suo, Z.: Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104(6), 062902 (2014)

    Article  Google Scholar 

  5. Bele, A., Tugui, C., Asandulesa, M., Ionita, D., Vasiliu, L., Stiubianu, G., Iacob, M., Racles, C., Cazacu, M.: Conductive stretchable composites properly engineered to develop highly commpliant electrodes for dielectric elastomer actuators. Smart Mater. Struct. 27, 105005 (2018)

    Article  Google Scholar 

  6. Bortot, E.: Analysis of multilayer electro-active spherical balloons. J. Mech. Phys. Solids 101, 250–267 (2017)

    MathSciNet  Article  Google Scholar 

  7. Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C., Suo, Z., Aksay, A.L.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101(9), 091907 (2012)

    Article  Google Scholar 

  8. Calabrese, L., Frediani, G., Gei, M., De, R.D., Carpi, F.: Active compression bandage made of electroactive elastomers. IEEE-ASME T Mech. 23(5), 2328–2337 (2018)

    Article  Google Scholar 

  9. Cao, X.N., Zhang, M.Q., Zhang, Z., Xu, Y., Xiao, Y.H., Li, T.F.: Review of soft linear actuator and the design of a dielectric elastomer linear actuator. Acta Mech. Solida Sin. 32, 566–579 (2019)

    Article  Google Scholar 

  10. Carpi, F.: Electromechanically active polymers. Polym. Int. 59(3), 277–278 (2010)

    Article  Google Scholar 

  11. Carpi, F., Kornbluh, R., Sommer, L.P., Alici, G.: Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir. Biomim. 6(4), 045006 (2011)

    Article  Google Scholar 

  12. Caspari, P., Dunki, S.J., Nueesch, F., Opris, D.: Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability. J. Mater. Chem. C 6, 2043–2053 (2018)

    Article  Google Scholar 

  13. Chen, B., Bai, Y., Xiang, F., Sun, J., Chen, Y.M.C., Wang, H., Zhou, J., Suo, Z.: Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. Pol. Phys. 52, 1055–1060 (2014a)

    Article  Google Scholar 

  14. Chen, B., Lu, J.J., Yang, C.H., Yang, J.H., Zhou, J., Chen, Y.M., Suo, Z.: Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014b)

    Article  Google Scholar 

  15. Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S., Tolley, M.T.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot 3(17), eaat1893 (2018)

    Article  Google Scholar 

  16. Eder-Goy, D., Zhao, Y., Xu, B.: Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading. Acta Mech. 228, 4293–4307 (2017)

    MathSciNet  Article  Google Scholar 

  17. Giousouf, M., Kovacs, G.: Dielectric elastomer actuators used for pneumatic valve technology. Smart Mater. Struct. 22(10), 104010 (2013)

    Article  Google Scholar 

  18. Goh, Y.F., Akbari, S., Vo, T.V.K., Koh, S.: Electrically-induced actuation of acrylic-based dielectric elastomers in excess of 500% strain. Soft Robot 5, 675–684 (2018)

    Article  Google Scholar 

  19. Gupta, U., Qin, L., Wang, Y., Godaba, H., Zhu, J.: Soft robots based on dielectric elastomer actuators: a review. Smart Mater. Struct. 28, 103002 (2019)

    Article  Google Scholar 

  20. He, T., Wang, Z.: Electro-viscoelastic performance of a tubular dielectric elastomer actuator. Int. J. Mech. Mater. Des. 15(2), 199–212 (2019)

    Article  Google Scholar 

  21. Hines, L., Petersen, K., Sitti, M.: Inflated soft actuators with reversible stable deformations. Adv. Mater. 28, 3690–3696 (2016)

    Article  Google Scholar 

  22. Huang, J., Li, T., Chiang, F.C., Zhu, J., Clarke, D.R., Suo, Z.: Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Appl. Phys. Lett. 100(4), 041911 (2012)

    Article  Google Scholar 

  23. Kofod, G.: The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D Appl. Phys. 41, 215405 (2008)

    Article  Google Scholar 

  24. Koh, S.J.A., Li, T.F., Zhou, J.X., Zhao, X.H., Hong, W., Zhu, J., Suo, Z.G.: Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. Pol. Phys. 49(7), 504–515 (2011)

    Article  Google Scholar 

  25. Kolbasova, A., Sinha-Rayabc, S., LYarin, A.: Theoretical and experimental study of punched laminate composites protected by outer paper layer. J. Mech. Phys. Solids 128, 117–136 (2019)

    MathSciNet  Article  Google Scholar 

  26. Li, J., Celiz, A.D., Yang, J., Yang, Q., Wamala, I., Whyte, W., Seo, B.R., Vasilyev, N.V., Vlassak, J.J., Suo, Z.: Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017a)

    Article  Google Scholar 

  27. Li, T., Li, G., Liang, Y., Cheng, T., Jing, D., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y.: Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017b)

    Article  Google Scholar 

  28. Li, Y., Oh, I., Chen, J., Zhang, H., Hu, Y.: Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane. Int. J. Solids Struct. 152, 28–38 (2018)

    Article  Google Scholar 

  29. Li, Z., Zhu, J., Foo, C.C., Yap, C.H.: A robust dual-membrane dielectric elastomer actuator for large volume fluid pumping via snap-through. Appl. Phys. Lett. 111(21), 212901 (2017c)

    Article  Google Scholar 

  30. Liu, J., Chen, Z., Liang, X., Huang, X., Mao, G., Hong, W., Yu, H., Qu, S.: Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. J. Mech. Phys. Solids 112, 458–471 (2018)

    Article  Google Scholar 

  31. Liu, L., Liu, Y., Luo, X., Li, B., Leng, J.: Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation. Mech. Mater. 55(14), 60–72 (2012)

    Article  Google Scholar 

  32. Liu, L., Zhang, Z., Li, J., Li, T., Leng, J.Y.: Stability of dielectric elastomer/carbon nanotube composites coupling electrostriction and polarization. Compos. Part-B Eng. 78, 35–41 (2015)

    Article  Google Scholar 

  33. Lu, T.Q., Huang, J.S., Jordi, C., Kovacs, G., Huang, R., Clarke, D.R., Suo, Z.G.: Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8(22), 6167–6173 (2012)

    Article  Google Scholar 

  34. Ma, C., Yang, M., Jia, K., Lu, T.Q.: Experimental investigations on the out-of-plane sub-harmonic vibration of a circular dielectric elastomer actuator. Acta Mech. Solida Sin. 32, 591–598 (2019)

    Article  Google Scholar 

  35. Moretti, G., Papini, G.P.R., Righi, M., Forehand, D., Ingram, D., Vertechy, R., Fontana, M.: Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater. Struct. 27, 035015 (2018)

    Article  Google Scholar 

  36. Ohalloran, A., Omalley, F., Mchugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008)

    Article  Google Scholar 

  37. Patra, K., Sahu, R.: A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int. J. Mech. Mater. Des. 11(1), 79–90 (2015)

    Article  Google Scholar 

  38. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  39. Pourazadi, S., Shagerdmootaab, A., Chan, H., Moallem, M., Menon, C.: On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater. Struct. 26, 115007 (2017)

    Article  Google Scholar 

  40. Rosset, S., Shea, H.R.: Small, fast, and tough: Shrinking down integrated elastomer transducers. Appl. Phys. Rev. 3, 031105 (2016)

    Article  Google Scholar 

  41. Rothemund, P., Ainla, A., Belding, L., Preston, D.J., Kurihara, S., Suo, Z.G., Whitesides, G.M.: A soft, bistable valve for autonomous control of soft actuators. Sci. Robot 3(16), eaar7986 (2018)

    Article  Google Scholar 

  42. Rudykh, S., Bhattacharya, K., Debotton, G.: Snap-through actuation of thick-wall electroactive balloons. Int. J. Non-linear Mech. 47(2), 206–209 (2012)

    Article  Google Scholar 

  43. Sharma, A.K., Joglekar, M.M.: Effect of anisotropy on the dynamic electromechanical instability of a dielectric elastomer actuator. Smart Mater. Struct. 28, 015006 (2019)

    Article  Google Scholar 

  44. Sheng, J., Chen, H., Li, B., Wang, Y.: Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater. Struct. 23, 045010 (2014)

    Article  Google Scholar 

  45. Shintake, J., Cacucciolo, V., Shea, H., Floreano, D.: Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot 5, 466–474 (2018)

    Article  Google Scholar 

  46. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Article  Google Scholar 

  47. Tang, D., Lim, C., Hong, L., Jiang, J., Lai, S.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn. 88, 2255–2264 (2017)

    Article  Google Scholar 

  48. Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H.A., Aksay, I.A., Holmes, D.P.: Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matter 10(27), 4789–4794 (2014)

    Article  Google Scholar 

  49. Wang, Y., Chen, B., Bai, Y., Wang, H., Zhou, J.: Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Appl. Phys. Lett. 104, 064101 (2014)

    Article  Google Scholar 

  50. Yu, X., Lu, Z., Cheng, L., Cui, F.: Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control. J. Sound Vib. 387, 114–126 (2016)

    Article  Google Scholar 

  51. Zhang, C., Sun, W., Chen, H., Liu, L., Li, B., Li, D.: Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. J. Appl. Phys. 119(9), 094108 (2016)

    Article  Google Scholar 

  52. Zhang, J., Tang, L., Li, B., Wang, Y., Chen, H.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 084902 (2015)

    Article  Google Scholar 

  53. Zhang, J., Chen, H., Li, D.: Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Phys. Rev. Appl. 8, 064016 (2017)

    Article  Google Scholar 

  54. Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104(17), 178302 (2010)

    Article  Google Scholar 

  55. Zhao, Y., Zha, J.W., Yin, L.J., Gao, Z.S., Wen, Y.Q., Dang, Z.M.: Remarkable electrically actuation performance in advanced acrylic-based dielectric elastomers without pre-strain at very low driving electric field. Polymer 137, 269–275 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91648101, 11972290), the Natural Science Foundation of Shaanxi Province of China (2020JM-105), the Fundamental Research Funds for the Central Universities (3102018zy012) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201910).

Funding

This work was supported by the National Natural Science Foundation of China (91648101, 11972290), the Natural Science Foundation of Shaanxi Province of China (2020JM-105) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201910).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hai-Lin Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, S., Zou, H. & Deng, Z. A dielectric elastomer membrane integrated with protective passive layers under explicit and implicit prestretch. Int J Mech Mater Des (2020). https://doi.org/10.1007/s10999-020-09499-6

Download citation

Keywords

  • Dielectric elastomer
  • Electromechanical instability
  • Prestretch
  • Protective passive layers