Modeling and characterisation of depletion of aluminium in bond coat and growth of mixed oxides in thermal barrier coatings

Abstract

Most existing thermal barrier coating (TBC) studies do not account for the depletion of Al in the BC and growth of mixed oxides (MOs). In this complementary study, we modify and extend our earlier (Lim and Meguid in Mater Des, 2019. https://doi.org/10.1016/j.matdes.2018.107543) coupled finite volume (FV)–finite element (FE) formulations to incorporate diffusion reactions of Al and Cr in the BC. The modified/expanded FV–FE formulations are supported by the introduction of appropriate diffusion–reaction equations and high temperature oxidation model. Three aspects of the work were accordingly examined. Firstly, the FV model is used to describe the diffusion and reaction of Al and O2 in the formation of α-Al2O3. The β-phase rate of depletion predicted by the model agrees well with experimental findings. Secondly, the diffusion of Cr through the TGO that leads to the formation of an external layer of MOs is simulated using the FV model. Our simulations reveal that MOs form in the early stage of thermal exposure, although there are sufficient Al in the BC to sustain the growth of α-Al2O3 phase. We reasoned this to the formation of internal oxides and diffusion cell in the BC. Lastly, we studied the effect of roughness on β-phase depletion and growth of TGO (α-Al2O3 + MOs). We show that β-phase in the peak of undulation depletes faster and the interface between the β + γ phase and γ phase in the BC straightens over time. Furthermore, our results reveal that MOs tend to form in the valley of undulation due to the shorter diffusion path.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

\( C_{{O_{2} }} \), \( C_{\text{Al}} \) and \( C_{\text{Cr}} \) :

Concentration of O2, Al and Cr, respectively

\( C_{{\upbeta,{\text{limit}}}} \) :

Concentration of Al at which β + γ two phase structure of BC transforms into a single γ-phase

\( C_{{{\text{Al}},{\text{crit}}}} \) :

Critical-healing concentration of Al

\( D_{{{\text{O}}_{2} ,{\text{TGO}}}} \) :

Diffusivity of O2 in TGO

\( D_{{{\text{O}}_{2} ,{\text{BC}}}} \) :

Diffusivity of O2 in BC

\( D_{{{\text{Al}},\upgamma}} \) :

Diffusivity of Al in γ-phase of BC

\( D_{{{\text{Al}},\upbeta}} \) :

Diffusivity of Al in β-phase of BC

\( D_{{{\text{Cr}},\upgamma}} \) :

Diffusivity of Cr in γ-phase of BC

\( D_{{{\text{Cr}},{\text{TGO}}}} \) :

Diffusivity of Cr in TGO

\( t_{\text{BC}} \) :

Thickness of BC

\( N_{{{\text{M}}_{2} {\text{O}}_{3} }} \) :

Maximum number of moles of M2O3 that can be formed in each control volume cell (M = Al or Cr)

\( \rho_{{{\text{M}}_{2} {\text{O}}_{3} }} \) :

Density of oxide M2O3 (M = Al or Cr)

\( m_{{{\text{M}}_{2} {\text{O}}_{3} }} \) :

Molar mass of oxide M2O3 (M = Al or Cr)

\( V_{CV} \) :

Volume of control volume or cell

\( n \) :

Volume fraction of oxide formed in control volume

tcell, and wcell :

Thickness and width of diffusion cell

h and w :

Height and width of mixed oxide formed

\( \bar{h}\,{\text{and}}\,\bar{w} \) :

Normalised height and width of mixed oxides

T :

Temperature

W and A :

Wavelength and Amplitude of sinusoidal undulation

Ux and Uy :

Displacement in the x-direction and y-direction

σ yy :

Out of plane stresses

BC:

Bond coat

FE:

Finite element

FV:

Finite volume

MOs:

Mixed oxides

TBC:

Thermal barrier coating

TC:

Top coat

TGO:

Thermally grown oxide

References

  1. Ali, M.S., Song, S., Xiao, P.: Degradation of thermal barrier coatings due to thermal cycling up to 1150 °C. J. Mater. Sci. (2002). https://doi.org/10.1023/A:1015245920054

    Article  Google Scholar 

  2. Bai, Y., Han, Z.H., Li, H.Q., Xu, C., Xu, Y.L., Ding, C.H., Yang, J.F.: Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings. Surf. Coat. Technol. (2011). https://doi.org/10.1016/j.surfcoat.2011.01.056

    Article  Google Scholar 

  3. Bai, Y., Ding, C., Li, H., Han, Z., Ding, B., Wang, T., Yu, L.: Isothermal oxidation behavior of supersonic atmospheric plasma-sprayed thermal barrier coating system. J. Therm. Spray Technol. (2013). https://doi.org/10.1007/s11666-013-9979-7

    Article  Google Scholar 

  4. Bakan, E., Vaßen, R.: Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J. Therm. Spray Technol. (2017). https://doi.org/10.1007/s11666-017-0597-7

    Article  Google Scholar 

  5. Birks, N., Meier, G.H., Pettit, F.S.: Introduction to the High Temperature Oxidation of Metals, 2nd edn (2006). https://doi.org/10.1017/cbo9781139163903

  6. Borgenstam, A., Engström, A., Höglund, L., Ågren, J.: DICTRA, a tool for simulation of diffusional transformations in alloys. J. Phase Equilib. (2000). https://doi.org/10.1361/105497100770340057

    Article  Google Scholar 

  7. Chen, H., Barman, T.: Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents. Comput. Mater. Sci. (2018). https://doi.org/10.1016/j.commatsci.2018.02.013

    Article  Google Scholar 

  8. Chen, H., McCartney, D.G.: Some aspects on modelling of the β-phase depletion behaviour under different oxide growth kinetics in HVOF CoNiCrAlY coatings. Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.01.075

    Article  Google Scholar 

  9. Chen, W.R., Wu, X., Dudzinski, D., Patnaik, P.C.: Modification of oxide layer in plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2005.08.141

    Article  Google Scholar 

  10. Chen, W.R., Wu, X., Marple, B.R., Lima, R.S., Patnaik, P.C.: Pre-oxidation and TGO growth behaviour of an air-plasma-sprayed thermal barrier coating. Surf. Coat. Technol. (2008a). https://doi.org/10.1016/j.surfcoat.2008.01.021

    Article  Google Scholar 

  11. Chen, W.R., Archer, R., Huang, X., Marple, B.R.: TGO growth and crack propagation in a thermal barrier coating. J. Therm. Spray Technol. (2008b). https://doi.org/10.1007/s11666-008-9251-8

    Article  Google Scholar 

  12. Chen, H., Jackson, G.A., Voisey, K.T., McCartney, D.G.: Modelling and experimental study on β-phase depletion behaviour of HVOF sprayed free-standing CoNiCrAlY coatings during oxidation. Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2016.02.008

    Article  Google Scholar 

  13. Chen, H., Rushworth, A., Hou, X., He, J., Guo, H.: Effects of temperature on the β-phase depletion in MCrAlYs: a modelling and experimental study towards designing new bond coat alloys. Surf. Coat. Technol. (2019). https://doi.org/10.1016/j.surfcoat.2019.02.024

    Article  Google Scholar 

  14. Curry, N., Tang, Z., Markocsan, N., Nylén, P.: Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—thermal and lifetime performance. Surf. Coat. Technol. 268, 15–23 (2015). https://doi.org/10.1016/j.surfcoat.2014.08.067

    Article  Google Scholar 

  15. Daroonparvar, M., Hussain, M.S., Yajid, M.A.M.: The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air. Appl. Surf. Sci. 261, 287–297 (2012a). https://doi.org/10.1016/j.apsusc.2012.08.002

    Article  Google Scholar 

  16. Daroonparvar, M., Hussain, M.S., Yajid, M.A.M.: The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air. Appl. Surf. Sci. (2012b). https://doi.org/10.1016/j.apsusc.2012.08.002

    Article  Google Scholar 

  17. Daroonparvar, M., Yajid, M.A.M., Yusof, N.M., Hussain, M.S., Rad, H.R.B.: Formation of a dense and continuous Al2O3 layer in nano thermal barrier coating systems for the suppression of spinel growth on the Al2O3 oxide scale during oxidation. J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.03.168

    Article  Google Scholar 

  18. Deal, B.E., Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. (1965). https://doi.org/10.1063/1.1713945

    Article  Google Scholar 

  19. Doleker, K.M., Karaoglanli, A.C.: Comparison of oxidation behavior of shot-peened plasma spray coatings with cold gas dynamic spray coatings. Oxid. Met. (2017). https://doi.org/10.1007/s11085-016-9691-3

    Article  Google Scholar 

  20. Echsler, H., Renusch, D., Schütze, M.: Bond coat oxidation and its significance for life expectancy of thermal barrier coating systems. Mater. Sci. Technol. (2004). https://doi.org/10.1179/026708304225012143

    Article  Google Scholar 

  21. Elsaß, M., Frommherz, M., Scholz, A., Oechsner, M.: Interdiffusion in MCrAlY coated nickel-base superalloys. Surf. Coat. Technol. 307, 565–573 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.049

    Article  Google Scholar 

  22. Eriksson, R., Sjöström, S., Brodin, H., Johansson, S., Östergren, L., Li, X.H.: TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects. Surf. Coat. Technol. (2013). https://doi.org/10.1016/j.surfcoat.2013.09.051

    Article  Google Scholar 

  23. Evans, H.E.: Oxidation failure of TBC systems: an assessment of mechanisms. Surf. Coat. Technol. 206, 1512–1521 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.053

    Article  Google Scholar 

  24. Evans, H.E., Taylor, M.P.: Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems. Oxid. Met. (2001). https://doi.org/10.1023/A:1010369024142

    Article  Google Scholar 

  25. Gell, M., Eric, J., Krishnakumar, V., McCarron, K., Barber, B., Sohn, Y.H., Tolpygo, V.K.: Bond strength, bond stress and spallation mechanisms of thermal barrier coatings. Surf. Coat. Technol. (1999). https://doi.org/10.1016/s0257-8972(99)00338-2

    Article  Google Scholar 

  26. Gell, M., Xie, L., Ma, X., Jordan, E.H., Padture, N.P.: Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf. Coat. Technol. (2004). https://doi.org/10.1016/j.surfcoat.2003.06.023

    Article  Google Scholar 

  27. Giggins, C.S., Pettit, F.S.: Oxidation of Ni–Cr–Al alloys between 1000 °C and 1200 °C. J. Electrochem. Soc. (2007). https://doi.org/10.1149/1.2407837

    Article  Google Scholar 

  28. Gil, A., Shemet, V., Vassen, R., Subanovic, M., Toscano, J., Naumenko, D., Singheiser, L., Quadakkers, W.J.: Effect of surface condition on the oxidation behaviour of MCrAlY coatings. Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.07.252

    Article  Google Scholar 

  29. Gupta, M., Eriksson, R., Sand, U., Nylén, P.: A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf. Coat. Technol. 271, 181–191 (2015a). https://doi.org/10.1016/j.surfcoat.2014.12.043

    Article  Google Scholar 

  30. Gupta, M., Eriksson, R., Sand, U., Nylén, P.: A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf. Coat. Technol. (2015b). https://doi.org/10.1016/j.surfcoat.2014.12.043

    Article  Google Scholar 

  31. Hagel, W.C., Seybolt, A.U.: Cation diffusion in Cr2O3. J. Electrochem. Soc. (1961). https://doi.org/10.1149/1.2427973

    Article  Google Scholar 

  32. Hasegawa, M., Kagawa, Y.: Microstructural and mechanical properties changes of a NiCoCrAlY bond coat with heat exposure time in air plasma-sprayed Y2O3–ZrO2 TBC systems. Int. J. Appl. Ceram. Technol. (2006). https://doi.org/10.1111/j.1744-7402.2006.02085.x

    Article  Google Scholar 

  33. Hille, T.S., Turteltaub, S., Suiker, A.S.J.: Oxide growth and damage evolution in thermal barrier coatings. Eng. Fract. Mech. 78, 2139–2152 (2011). https://doi.org/10.1016/j.engfracmech.2011.04.003

    Article  Google Scholar 

  34. Hindam, H., Whittle, D.P.: Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxid. Met. 18, 245–284 (1982). https://doi.org/10.1007/BF00656571

    Article  Google Scholar 

  35. Karunaratne, M.S.A., Ogden, S.L., Kenny, S.D., Thomson, R.C.: A multicomponent diffusion model for prediction of microstructural evolution in coated Ni based superalloy systems. Mater. Sci. Technol. (2009). https://doi.org/10.1179/174328408x355415

    Article  Google Scholar 

  36. Kumar, V., Balasubramanian, K.: Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Prog. Org. Coat. (2016). https://doi.org/10.1016/j.porgcoat.2015.09.019

    Article  Google Scholar 

  37. Li, Y., Li, C.J., Zhang, Q., Yang, G.J., Li, C.X.: Influence of composition of TGO on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlTaY bond coat. In: Proceedings of International Thermal Spray Conference (2009). https://doi.org/10.1361/cp2009itsc0071

  38. Li, Y., Li, C.J., Yang, G.J., Xing, L.K.: Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf. Coat. Technol. (2010). https://doi.org/10.1016/j.surfcoat.2010.08.144

    Article  Google Scholar 

  39. Lim, L.Y., Meguid, S.A.: Temperature dependent dynamic growth of thermally grown oxide in thermal barrier coatings. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2018.107543

    Article  Google Scholar 

  40. Lima, C.R.C., Guilemany, J.M.: Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf. Coat. Technol. (2007). https://doi.org/10.1016/j.surfcoat.2006.10.005

    Article  Google Scholar 

  41. Lu, Z., Myoung, S.W., Kim, E.H., Lee, J.H., Jung, Y.G.: Microstructure evolution and thermal durability with coating thickness in APS thermal barrier coatings. Mater. Today Proc. (2014). https://doi.org/10.1016/j.matpr.2014.09.009

    Article  Google Scholar 

  42. Lu, X.-L., Liu, X.-B., Yu, P.-C., Qiao, S.-J., Zhai, Y.-J., Wang, M.-D., Chen, Y., Xu, D.: Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding. Opt. Laser Technol. 78, 87–94 (2016). https://doi.org/10.1016/j.optlastec.2015.10.005

    Article  Google Scholar 

  43. Ma, K., Schoenung, J.M.: Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO. Surf. Coat. Technol. (2011). https://doi.org/10.1016/j.surfcoat.2011.05.025

    Article  Google Scholar 

  44. Manap, A., Nakano, A., Ogawa, K.: The protectiveness of thermally grown oxides on cold sprayed CoNiCrAlY bond coat in thermal barrier coating. J. Therm. Spray Technol. (2012). https://doi.org/10.1007/s11666-012-9749-y

    Article  Google Scholar 

  45. Mori, T., Kuroda, S., Murakami, H., Katanoda, H., Sakamoto, Y., Newman, S.: Effects of initial oxidation on β phase depletion and oxidation of CoNiCrAlY bond coatings fabricated by warm spray and HVOF processes. Surf. Coat. Technol. (2013). https://doi.org/10.1016/j.surfcoat.2013.01.028

    Article  Google Scholar 

  46. Moridi, A., Azadi, M., Farrahi, G.H.: Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 243, 91–99 (2014). https://doi.org/10.1016/j.surfcoat.2012.02.019

    Article  Google Scholar 

  47. Müller, J., Neuschütz, D.: Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades. User Model. User-Adapt. Interact. (2003). https://doi.org/10.1016/s0042-207x(02)00746-7

    Article  Google Scholar 

  48. Nakamura, R., Takasawa, K., Yamazaki, Y., Iijima, Y.: Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl. Intermetallics (2002). https://doi.org/10.1016/S0966-9795(01)00125-X

    Article  Google Scholar 

  49. Ni, L.Y., Liu, C., Huang, H., Zhou, C.G.: Thermal cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat. J. Therm. Spray Technol. 20, 1133 (2011). https://doi.org/10.1007/s11666-011-9647-8

    Article  Google Scholar 

  50. Nijdam, T.J., Jeurgens, L.P.H., Sloof, W.G.: Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions. Acta Mater. (2005). https://doi.org/10.1016/j.actamat.2004.12.014

    Article  Google Scholar 

  51. Nijdam, T.J., Marijnissen, G.H., Vergeldt, E., Kloosterman, A.B., Sloof, W.G.: Development of a pre-oxidation treatment to improve the adhesion between thermal barrier coatings and NiCoCrAlY bond coatings. Oxid. Met. (2006). https://doi.org/10.1007/s11085-006-9036-8

    Article  Google Scholar 

  52. Pint, B.A., Garrattreed, A., Hobbs, L.W.: Analytical electron-microscopy study of the breakdown of α-Al2O3 scales formed on oxide dispersion-strengthened alloys. Oxid. Met. 56(1–2), 119–145 (2001)

    Article  Google Scholar 

  53. Rabiei, A.: Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater. 48, 3963–3976 (2000). https://doi.org/10.1016/S1359-6454(00)00171-3

    Article  Google Scholar 

  54. Ranjbar-Far, M., Absi, J., Mariaux, G., Dubois, F.: Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater. Des. 31, 772–781 (2010). https://doi.org/10.1016/j.matdes.2009.08.005

    Article  Google Scholar 

  55. Renusch, D., Schorr, M., Schütze, M.: The role that bond coat depletion of aluminum has on the lifetime of APS–TBC under oxidizing conditions. Mater. Corros. 59, 547–555 (2008). https://doi.org/10.1002/maco.200804137

    Article  Google Scholar 

  56. Richer, P., Yandouzi, M., Beauvais, L., Jodoin, B.: Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf. Coat. Technol. (2010). https://doi.org/10.1016/j.surfcoat.2010.03.043

    Article  Google Scholar 

  57. Saremi, M., Afrasiabi, A., Kobayashi, A.: Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. (2008). https://doi.org/10.1016/j.surfcoat.2007.11.029

    Article  Google Scholar 

  58. Sarioglu, C., Schumann, E., Blachere, J.R., Pettit, F.S., Meier, G.H.: X-ray determination of stresses in alumina scales on high temperature alloys. Mater. High Temp. 17, 109–115 (2000). https://doi.org/10.1179/mht.2000.017

    Article  Google Scholar 

  59. Schlichting, K.W., Vaidyanathan, K., Sohn, Y.H., Jordan, E.H., Gell, M., Padture, N.P.: Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement. Mater. Sci. Eng. A 291, 68–77 (2000). https://doi.org/10.1016/S0921-5093(00)00973-4

    Article  Google Scholar 

  60. Stiger, M.J., Yanar, N.M., Topping, M.G., Pettit, F.S., Meier, G.H.: Thermal barrier coatings for the 21st century. Zeitschrift Fur Met. 90, 1069–1078 (1999)

    Google Scholar 

  61. Strauss, D., Müller, G., Schumacher, G., Engelko, V., Stamm, W., Clemens, D., Quaddakers, W.J.: Oxide scale growth on MCrAlY bond coatings after pulsed electron beam treatment and deposition of EBPVD-TBC. Surf. Coat. Technol. (2001). https://doi.org/10.1016/S0257-8972(00)00916-6

    Article  Google Scholar 

  62. Tang, F., Ajdelsztajn, L., Schoenung, J.M.: Influence of cryomilling on the morphology and composition of the oxide scales formed on HVOF CoNiCrAlY coatings. Oxid. Met. (2004). https://doi.org/10.1023/B:OXID.0000025332.26757.41

    Article  Google Scholar 

  63. Tang, J.J., Bai, Y., Zhang, J.C., Liu, K., Liu, X.Y., Zhang, P., Wang, Y., Zhang, L., Liang, G.Y., Gao, Y., Yang, J.F.: Microstructural design and oxidation resistance of CoNiCrAlY alloy coatings in thermal barrier coating system. J. Alloys Compd. 688, 729–741 (2016). https://doi.org/10.1016/j.jallcom.2016.07.018

    Article  Google Scholar 

  64. Taylor, M.P., Pragnell, W.M., Evans, H.E.: The influence of bond coat surface roughness on chemical failure and delamination in TBC systems. Mater. Corros. (2008). https://doi.org/10.1002/maco.200804135

    Article  Google Scholar 

  65. Tsai, K.Y., Tsai, M.H., Yeh, J.W.: Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. (2013). https://doi.org/10.1016/j.actamat.2013.04.058

    Article  Google Scholar 

  66. Vaidyanathan, K., Gell, M., Jordan, E.: Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges. Surf. Coat. Technol. (2000). https://doi.org/10.1016/S0257-8972(00)00891-4

    Article  Google Scholar 

  67. Wang, L., Li, D.C., Yang, J.S., Shao, F., Zhong, X.H., Zhao, H.Y., Yang, K., Tao, S.Y., Wang, Y.: Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: a review. J. Eur. Ceram. Soc. (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.12.038

    Article  Google Scholar 

  68. Xie, F., Sun, Y., Li, D., Bai, Y., Zhang, W.: Modelling of catastrophic stress development due to mixed oxide growth in thermal barrier coatings. Ceram. Int. (2019). https://doi.org/10.1016/J.CERAMINT.2019.02.214

    Article  Google Scholar 

  69. Zhang, W.-W., Li, G.-R., Zhang, Q., Yang, G.-J., Zhang, G.-W., Mu, H.-M.: Self-enhancing thermal insulation performance of bimodal-structured thermal barrier coating. J. Therm. Spray Technol. 27, 1064–1075 (2018). https://doi.org/10.1007/s11666-018-0754-7

    Article  Google Scholar 

  70. Zhu, H.X., Fleck, N.A., Cocks, A.C.F., Evans, A.G.: Numerical simulations of crack formation from pegs in thermal barrier systems with NiCoCrAlY bond coats. Mater. Sci. Eng. A 404, 26–32 (2005). https://doi.org/10.1016/j.msea.2005.05.033

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, L.Y., Meguid, S.A. Modeling and characterisation of depletion of aluminium in bond coat and growth of mixed oxides in thermal barrier coatings. Int J Mech Mater Des 16, 667–683 (2020). https://doi.org/10.1007/s10999-019-09482-w

Download citation

Keywords

  • Thermal barrier coatings
  • Finite volume
  • Finite element
  • Thermally grown oxide
  • Mixed oxides
  • Diffusion reaction