Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach

Abstract

In this paper, the propagation of bounded uncertainties in the dynamic response of a misaligned rotor is investigated using a Legendre collocation based non-intrusive analysis method. A finite element rotor model is used and the parallel and angular misalignments are modelled by additions of stiffness and force terms to the system. A simplex meta-model for the harmonic solutions of the vibration problem is constructed to take into account the uncertainties. The influences of uncertainties in the fault parameters are analysed and the calculation performance of the interval method is validated. Different propagation mechanisms of the uncertainties are observed in the interval responses and discussed in case studies. The results of this study will promote the understandings of the nonlinear vibrations in misaligned rotor systems with interval variables.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Al-Hussain, K.M.: Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. J. Sound Vib. 266(2), 217–234 (2003)

    Google Scholar 

  2. Biswas, D., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite. Int. J. Mech. Mater. Des. 9(1), 83–104 (2013)

    Google Scholar 

  3. Bhattacharya, A., Dutt, J.K., Pandey, R.K.: Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior. J. Tribol. 139(6), 061701 (2017)

    Google Scholar 

  4. Didier, J., Sinou, J.-J., Faverjon, B.: Study of the non-linear dynamic response of a rotor system with faults and uncertainties. J. Sound Vib. 331(3), 671–703 (2012a)

    MATH  Google Scholar 

  5. Didier, J., Faverjon, B., Sinou, J.-J.: Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. J. Vib. Control 18(5), 712–732 (2012b)

    MathSciNet  MATH  Google Scholar 

  6. El-Mongy, H.H., Younes, Y.K.: Vibration analysis of a multi-fault transient rotor passing through sub-critical resonances. J. Vib. Control 24(14), 2986–3009 (2018)

    Google Scholar 

  7. Elishakoff, I., Sarlin, N.: Uncertainty quantification based on pillars of experiment, theory, and computation. Part II: theory and computation. Mech. Syst. Signal Process. 74, 54–72 (2016)

    Google Scholar 

  8. Friswell, M.I., Penny, J.E., Lees, A.W., Garvey, S.D.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Fu, C., Ren, X., Yang, Y., Xia, Y., Deng, W.: An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty. Mech. Syst. Signal Process. 107, 137–148 (2018a)

    Google Scholar 

  10. Fu, C., Ren, X., Yang, Y., Lu, K., Wang, Y.: Nonlinear response analysis of a rotor system with a transverse breathing crack under interval uncertainties. Int. J. Nonlin. Mech. 105, 77–87 (2018b)

    Google Scholar 

  11. Fu, C., Ren, X., Yang, Y., Qin, W.: Dynamic response analysis of an overhung rotor with interval uncertainties. Nonlinear Dyn. 89(3), 2115–2124 (2017)

    Google Scholar 

  12. Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. The State University of New Jersey, New Brunswick (1999)

    Google Scholar 

  13. Jiang, C., Lu, G., Han, X., Liu, L.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Des. 8(2), 169–182 (2012)

    Google Scholar 

  14. Koroishi, E.H., Cavalini Jr., A.A., Lima, A.M., Steffen Jr., V.: Stochastic modeling of flexible rotors. J. Braz. Soc. Mech. Sci. 34, 574–583 (2012)

    Google Scholar 

  15. Kang, C.H., Hsu, W.C., Lee, E.K., Shiau, T.N.: Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect. Mech. Mach. Theory 46(3), 264–275 (2011)

    MATH  Google Scholar 

  16. Lu, K., Jin, Y., Chen, Y., Yang, Y., Hou, L., Zhang, Z., Li, Z., Fu, C.: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Process. 123, 264–297 (2019)

    Google Scholar 

  17. Lu, K., Lian, Z., Gu, F., Liu, H.: Model-based chatter stability prediction and detection for the turning of a flexible workpiece. Mech. Syst. Signal Process. 100, 814–826 (2018)

    Google Scholar 

  18. Li, B., Ma, H., Yu, X., Zeng, J., Guo, X., Wen, B.: Nonlinear vibration and dynamic stability analysis of rotor-blade system with nonlinear supports. Arch. Appl. Mech. 89(7), 1375–1402 (2019)

    Google Scholar 

  19. Li, Z., Jiang, J., Tian, Z.: Stochastic dynamics of a nonlinear misaligned rotor system subject to random fluid-induced forces. J. Comput. Nonlin. Dyn. 12(1), 011004 (2017)

    Google Scholar 

  20. Li, Z., Jiang, J., Tian, Z.: Non-linear vibration of an angular-misaligned rotor system with uncertain parameters. J. Vib. Control 22(1), 129–144 (2016)

    Google Scholar 

  21. Li, J., Hong, J., Ma, Y., Zhang, D.: Modelling of misaligned rotor systems in aero-engines. In: ASME Turbo Expo 2012: International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 535–543 (2012)

  22. Liu, J., Sun, X., Meng, X., Li, K., Zeng, G., Wang, X.: A novel shape function approach of dynamic load identification for the structures with interval uncertainty. Int. J. Mech. Mater. Des. 12(3), 375–386 (2016)

    Google Scholar 

  23. Lees, A.: Misalignment in rigidly coupled rotors. J. Sound Vib. 305(1), 261–271 (2007)

    MathSciNet  Google Scholar 

  24. Ma, H., Zeng, J., Feng, R., Pang, X., Wang, Q., Wen, B.: Review on dynamics of cracked gear systems. Eng. Fail. Anal. 55, 224–245 (2015a)

    Google Scholar 

  25. Ma, H., Wang, X., Niu, H., Wen, B.: Oil-film instability simulation in an overhung rotor system with flexible coupling misalignment. Arch. Appl. Mech. 85(7), 893–907 (2015b)

    Google Scholar 

  26. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  27. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009)

    Google Scholar 

  28. Qi, W., Qiu, Z.: A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci. China Phys. Mech. 55(1), 66–77 (2012)

    Google Scholar 

  29. Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)

    MATH  Google Scholar 

  30. Redmond, I.: Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness-theoretical model and analysis. J. Sound Vib. 329(6), 700–720 (2010)

    Google Scholar 

  31. Roy, P.A., Meguid, S.A.: Nonlinear transient dynamic response of a blade subject to a pulsating load in a decaying centrifugal force field. Int. J. Mech. Mater. Des. 14(4), 709–728 (2018)

    Google Scholar 

  32. Ritto, T.G., Lopez, R.H., Sampaio, R., Cursi, J.E.S.D.: Robust optimization of a flexible rotor-bearing system using the Campbell diagram. Eng. Optimiz. 43(1), 77–96 (2011)

    MathSciNet  Google Scholar 

  33. Soize, C.: Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 109(5), 1979–1996 (2001)

    Google Scholar 

  34. Sinou, J.-J., Nechak, L., Besset, S.: Kriging metamodeling in rotordynamics: application for predicting critical speeds and vibrations of a flexible rotor. Complexity. Article ID 1264619 (2018)

  35. Sinou, J.-J., Faverjon, B.: The vibration signature of chordal cracks in a rotor system including uncertainties. J. Sound Vib. 331(1), 138–154 (2012)

    Google Scholar 

  36. Sinha, J.K., Lees, A., Friswell, M.I.: Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. J. Sound Vib. 272(3–5), 967–989 (2004)

    Google Scholar 

  37. Srinivas, R.S., Tiwari, R., Kannababu, C.: Model based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearing. J. Sound Vib. 450, 109–140 (2019)

    Google Scholar 

  38. Tai, X., Ma, H., Liu, F., Liu, Y., Wen, B.: Stability and steady-state response analysis of a single rub-impact rotor system. Arch. Appl. Mech. 85(1), 133–148 (2015)

    Google Scholar 

  39. Tuckmantel, F.W., Cavalca, K.L.: Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mech. Mach. Theory 133, 559–583 (2019)

    Google Scholar 

  40. Wang, N., Jiang, D.: Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: theoretical analysis and experimental study. Mech. Mach. Theory 125, 207–219 (2018)

    Google Scholar 

  41. Wang, C., Ma, Y., Zhang, D., Hong, J.: Interval analysis on aero-engine rotor system with misalignment. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, V07AT30A002 (2015)

  42. Wu, J., Luo, Z., Zheng, J., Jiang, C.: Incremental modeling of a new high-order polynomial surrogate model. Appl. Math. Model. 40(7–8), 4681–4699 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput. Struct. 146, 185–196 (2015)

    Google Scholar 

  44. Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Xu, M., Marangoni, R.: Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, Part II: experimental validation. J. Sound Vib. 176(5), 681–691 (1994)

    MATH  Google Scholar 

  46. Yang, Y., Wu, Q., Wang, Y., Qin, W., Lu, K.: Dynamic characteristics of cracked uncertain hollow-shaft. Mech. Syst. Signal Process. 124, 36–48 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 11272257) and the Fundamental Research Funds for the Central Universities (No. 3102018ZY016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Yang, Y., Lu, K. et al. Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach. Int J Mech Mater Des 16, 557–568 (2020). https://doi.org/10.1007/s10999-019-09477-7

Download citation

Keywords

  • Rotor
  • Misalignment
  • Bounded uncertainty
  • Harmonic response
  • Legendre collocation