Skip to main content
Log in

Modelling of the mechanical response of Zr–Nb and Ti–Nb alloys in a wide temperature range

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This article presents the results of modeling the mechanical behavior of Zr–Nb and Ti–Nb alloys in a range of strain rates from 0.001 to 1000 1/s and temperature range 297–1273 K. A modification of constitutive equations describing the mechanical response of fine-grained and coarse-grained Zr–1Nb and Ti–13Nb–13Zr alloys in a wide temperature range is proposed. It was shown that the phase transition between the hexagonal closed packed and body-centered cubic crystal structure at elevated temperatures leads to a sharp change in strain rate sensitivity of the yield strength of Zr–Nb and Ti–Nb alloys. The proposed modifications of constitutive equations make it possible to describe the strain hardening and the strain rate sensitivity of the plastic flow stress over a wide temperature range in the coarse-crystalline and ultrafine-grained Zr–Nb and Ti–Nb alloys. The results can be used for engineering analysis of structural elements of technical systems and design of manufacturing technologies for biomedical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed, F., Voyiadijs, G.Z.: A consistent modified Zerilli–Armstrong flow stress model for BCC and FCC metals for elevated temperatures. Acta Mech. 175, 1–18 (2005)

    Article  Google Scholar 

  • Behera, A.N., Chaudhuri, A., Kapoor, R., Chakravartty, J.K., Suwas, S.: High temperature deformation behavior of Nb–1 wt% Zr alloy. Mater. Des. 92, 750–759 (2016)

    Article  Google Scholar 

  • Blokhin, D.A., Chernov, V.M., Blokhin, A.I., Demin, N.A., Sipachev, I.V.: Nuclear and physics properties of zirconium alloys E-110 and E-635 under long time neutron irradiation in the VVER-1000 reactor. Adv. Mater. 5, 23–29 (2011)

    Google Scholar 

  • Bobbili, R., Madhu, V.: Constitutive modeling and fracture behavior of a biomedical Ti–13Nb–13Zr alloy. Mater. Sci. Eng., A 700, 82–91 (2017)

    Article  Google Scholar 

  • Bonisch, M., Calin, M., Waitz, T., Panigrahi, A., Zehetbauer, M., Gebert, A., Skrotzki, W., Eckert, J.: Thermal stability and phase transformations of martensitic Ti–Nb alloys. Sci. Technol. Adv. Mater. 14, 055004 (2013)

    Article  Google Scholar 

  • Cao, W.Q., Yu, S.H., Chun, Y.B., Yoo, Y.C., Lee, C.M., Shin, D.H., Hwang, S.K.: Strain path effects on the microstructure evolution and mechanical properties of Zr702. Mater. Sci. Eng. A395, 77–86 (2005)

    Article  Google Scholar 

  • Chui, P.: Near β-type Zr–Nb–Ti biomedical alloys with high strength and low modulus. Vacuum 143, 54–58 (2017)

    Article  Google Scholar 

  • Clouet, E., Cottura, M.: Solubility in Zr–Nb alloys from first-principles. Acta Mater. 144, 21–30 (2018)

    Article  Google Scholar 

  • Dafang, W., Fei, S., Chengxiang, L., Ronghai, M., Chinan, C., Yuewu, W., Liang, H.: Experimental study on mechanical behaviors of Al-alloys under transient aerodynamic heating. Int. J. Mech. Mater. Des. 6, 331–340 (2010)

    Article  Google Scholar 

  • Dar, U.A., Zhang, W.H., Xu, Y.J.: Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA. Int. J. Mech. Mater. Des. 10, 93–107 (2014)

    Article  Google Scholar 

  • Duan, Z., Yang, Y., Satoh, Y., Murakami, K., Kano, S., Zhao, Z., Shen, J., Abe, H.: Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 316, 131–150 (2017)

    Article  Google Scholar 

  • Fong, R.W.L.: Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures. J. Nucl. Mater. 440, 467–476 (2013)

    Article  Google Scholar 

  • Gao, C.Y., Zhang, L.C., Yan, H.X.: A new constitutive model for HCP metals. Mater. Sci. Eng. A528, 4445–4452 (2011)

    Article  Google Scholar 

  • Guo, D., Zhang, Z., Zhang, G., Li, M., Shi, Y., Ma, T., Zhang, X.: An extraordinary enhancement of strain hardening in fine-grained zirconium. Mater. Sci. Eng. A591, 167–172 (2014)

    Article  Google Scholar 

  • Hahn, E.N., Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A646, 101–134 (2015)

    Article  Google Scholar 

  • Hatt, B.A., Rivlin, V.G.: Phase transformations in superconducting Ti–Nb alloys. J. Phys. D Appl. Phys. 1(9), 1145–1149 (1968)

    Article  Google Scholar 

  • Huh, H., Ahn, K., Lim, J.H., Kim, H.W., Park, L.J.: Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates. J. Mater. Process. Technol. 214, 1326–1340 (2014)

    Article  Google Scholar 

  • Hynowska, A., Pellicer, E., Fornell, J., González, S., van Steenberge, N., Suriñach, S., Gebert, A., Calin, V., Eckert, J., Baró, M.D., Sort, J.: Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications. Microstructure benefits on the mechanical and corrosion performances. Mater. Sci. Eng. C32, 2418–2425 (2012)

    Article  Google Scholar 

  • Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  • Kazakov, D.N., Kozelkov, O.E., Mayorova, A.S.: Dynamic behavior of zirconium alloy E110 under submicrosecond shock-wave loading. EPJ Web Conf. 94, 1–5 (2015)

    Article  Google Scholar 

  • Li, J., Weng, G.J.: A micromechanical approach to the stress–strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials. Int. J. Mech. Mater. Des. 9, 141–152 (2013)

    Article  Google Scholar 

  • Moffat, D.L., Kattner, U.R.: Stable and metastable Ti–Nb phase diagrams. Metall. Mater. Trans. A 19(10), 2389–2397 (1988)

    Article  Google Scholar 

  • Motta, A.T., Yilmazbayhan, A., Gomes da Silva, M., Comstock, R.J., Busby, J., Gartner, E.: Zirconium alloys for supercritical water reactor applications: challenges and possibilities. J. Nucl. Mater. 371, 61–75 (2007)

    Article  Google Scholar 

  • Nikonov, AYu., Zharmukhambetova, A.M., Skripnyak, N.V., Ponomareva, A.V., Abrikosov, I.A., Barannikova, S.A., Dmitriev, A.I.: Calculation of mechanical properties of BCC Ti–Nb alloys. AIP Conf. Proc. 1683, 020165 (2015)

    Article  Google Scholar 

  • Rodchenkov, B.S., Semenov, A.N.: High temperature mechanical behavior of Zr–2.5% Nb alloy. Nucl. Eng. Des. 235, 2009–2018 (2005)

    Article  Google Scholar 

  • Sarkar, A., Chandanshive, S.A., Thota, M.K., Kapoor, R.: High temperature deformation behaviour of Zr-1Nb alloy. J. Alloys Compd. 703, 56–66 (2017)

    Article  Google Scholar 

  • Skripnyak, V.A., Skripnyak, E.G.: Mechanical behavior of nanostructured and ultrafine-grained metal alloy under intensive dynamic loading. In: Vakhrushev, A. (ed.) Nanotechnology and Nanomaterials, Chapter 2. IntechOpen, London (2017)

    Google Scholar 

  • Skripnyak, N.V., Skripnyak, V.A., Skripnyak, V.V.: Fracture of thin metal sheets with distribution of grain sizes in the layers. In: Papadrakakis, M., Papadopoulos, V., Stefanou, G., Plevris, V. (eds.) ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016, vol. 1, pp. 355–365 (2016)

  • Skripnyak, V.A., Skripnyak, N.V., Skripnyak, E.G., Skripnyak, V.V.: Influence of grain size distribution on the mechanical behaviour of light alloys in wide range of strain rates. AIP Conf. Proc. 1793, 110001 (2017)

    Article  Google Scholar 

  • Tengen, T.B.: The response of the statistics of the cumulative features on grains in nanomaterials to different grain growth phenomena. Int. J. Mech. Mater. Des. 8, 101–112 (2012)

    Article  Google Scholar 

  • Toyama, T., Matsukawa, Y., Saito, K., Satoh, Y., Abe, H., Shinohara, Y., Nagai, Y.: Microstructural analysis of impurity segregation around β-Nb precipitates in Zr–Nb alloy using positron annihilation spectroscopy and atom probe tomography. Scr. Mater. 108, 156–159 (2015)

    Article  Google Scholar 

  • van Liempt, P., Bos, C., Sietsma, J.: A physically based yield criterion II. Incorporation of Hall Petch effect and resistance due to thermally activated dislocation glide. Mater. Sci. Eng. A 652, 7–13 (2016)

    Article  Google Scholar 

  • Xiao, D., Li, Y., Hu, S.: High strain rate deformation behavior of zirconium at elevated temperatures. J. Mater. Sci. Technol. 26, 878–882 (2010)

    Article  Google Scholar 

  • Yang, Y., Wu, S.Q., Li, G.P., Li, Y.L., Lu, Y.F., Yang, K., Ge, P.: Evolution of deformation mechanisms of Ti–22.4 Nb–0.73Ta–2Zr–1.34O alloy during straining. Acta Mater. 58, 2778–2787 (2010)

    Article  Google Scholar 

  • Zain-ul-abdein, M., Nelias, D.: Effect of coherent and incoherent precipitates upon the stress and strain fields of 6xxx aluminium alloys: a numerical analysis. Int. J. Mech. Mater. Des. 12, 255–271 (2016)

    Article  Google Scholar 

  • Zerilli, F.J., Armstrong, R.W.: The effect of dislocation drag on the stress–strain behaviour of FCC metals. Acta Metall. Mater. 40, 1803–1808 (1992)

    Article  Google Scholar 

  • Zhang, W., Cai, Y.: Continuum Damage Mechanics and Numerical Applications. Springer, Heidelberg (2010)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSF), Grant No. 18-71-00117. The authors are grateful for the support of this research. Authors thank V. A. Serbenta and S.D. Rudakov for the help in work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Skripnyak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripnyak, V.A., Skripnyak, V.V., Skripnyak, E.G. et al. Modelling of the mechanical response of Zr–Nb and Ti–Nb alloys in a wide temperature range. Int J Mech Mater Des 16, 215–224 (2020). https://doi.org/10.1007/s10999-019-09447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09447-z

Keywords

Navigation