Skip to main content
Log in

A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, thermal buckling and free/forced vibration characteristics of size-dependent composite cylindrical nanoshell reinforced with graphene platelets (GPLs) is presented. Also, the nanoshell is embedded in an elastic pasternak medium, which is obtained by adding a shear layer to the Winkler model. The present nano-resonator is based on a vibrating first order nanoscale cylindrical shell subjected to transverse pressure. The temperature-dependent material properties of piece-wise functionally graded graphene-reinforced composites (FG-GRCs) are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated through a nanomechanical model. Also, Halpin–Tsai nanomechanical model in used to surmise the effective material properties of each layer. The size-dependent FG-GRCs nanoshell is analyzed using modified couple stress parameter. The novelty of the current study is in considering the effects of FG-GRCs and thermal in addition of size effect on resonance frequencies, thermal buckling and dynamic deflections of the FG-GRCs nanoshell. The governing equations and boundary conditions have been developed using Hamilton’s principle and have been solved with the aid of analytical method. The results show that, GPL distribution pattern, modified couple stress parameter, length to radius ratio, mode number, winkler coefficient and thermal environment have important role on resonance frequency, relative frequency change, thermal buckling and dynamic deflections of the FG-GRCs cylindrical nanoshell in thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ansari, R., Gholami, R., Rouhi, H.: Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos. B Eng. 43, 2985–2989 (2012)

    Article  Google Scholar 

  • Asghari, M., Kahrobaiyan, M., Rahaeifard, M., Ahmadian, M.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81, 863–874 (2011)

    Article  MATH  Google Scholar 

  • Atanasov, M.S., Karličić, D., Kozić, P.: Forced transverse vibrations of an elastically connected nonlocal orthotropic double-nanoplate system subjected to an in-plane magnetic field. Acta Mech. 228, 2165–2185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Baibarac, M., Gómez-Romero, P.: Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6, 289–302 (2006)

    Article  Google Scholar 

  • Barati, M.R.: A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur. J. Mech. A/Solids 67, 215–230 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Barooti, M.M., Safarpour, H., Ghadiri, M.: Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur. Phys. J. Plus 132, 6 (2017)

    Article  Google Scholar 

  • Barretta, R., Marotti de Sciarra, F.: A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 1–8 (2013)

    Article  Google Scholar 

  • Barretta, R., Brčić, M., Čanađija, M., Luciano, R., de Sciarra, F.M.: Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment. Eur. J. Mech. A/Solids 65, 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  • Čanađija, M., Barretta, R., de Sciarra, F.M.: On functionally graded Timoshenko nonisothermal nanobeams. Compos. Struct. 135, 286–296 (2016)

    Article  Google Scholar 

  • de Sciarra, F.M., Salerno, M.: On thermodynamic functions in thermoelasticity without energy dissipation. Eur. J. Mech. A/Solids 46, 84–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Eslami, M., Ziaii, A., Ghorbanpour, A.: Thermoelastic buckling of thin cylindrical shells based on improved stability equations. J. Therm. Stresses 19, 299–315 (1996)

    Article  Google Scholar 

  • Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)

    Article  Google Scholar 

  • Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: a review. Sens. Actuators A Phys. 112, 395–408 (2004)

    Article  Google Scholar 

  • Ghadiri, M., Safarpour, H.: Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A 122, 833 (2016)

    Article  Google Scholar 

  • Huang, H., Han, Q.: Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur. J. Mech. A/Solids 27, 1026–1036 (2008)

    Article  MATH  Google Scholar 

  • Khanade, K., Sasangohar, F., Sadeghi, M., Sutherland, S., Alexander, K.: Deriving information requirements for a smart nursing system for intensive care units. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 653–654 (2017)

  • Kolter, W.: Couple stresses in the theory of elasticity. Proc. Koninklijke Nederl. Akaad. van Wetensch 67, 20 (1964)

    MathSciNet  Google Scholar 

  • Kothurkar, N.K.: Solid State, Transparent, Cadmium Sulfide-Polymer Nanocomposites. University of Florida, Gainesville (2004)

    Google Scholar 

  • Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., et al.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063 (2006)

    Article  Google Scholar 

  • Li, M., Liu, J., Zhang, X., Tian, Y., Jiang, K.: Fabrication of graphene/nickel composite microcomponents using electroforming. Int. J. Adv. Manuf. Technol. 96, 3191–3196 (2018)

    Article  Google Scholar 

  • Mescher, M.J., Houston, K., Bernstein, J.J., Kirkos, G., Cheng, J., Cross, L.E.: Novel MEMS microshell transducer arrays for high-resolution underwater acoustic imaging applications. In: Sensors, 2002. Proceedings of IEEE, pp. 541–546 (2002)

  • Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A., Hoorzad, H.: Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63, 223–228 (2014)

    Article  Google Scholar 

  • Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzavand, B., Eslami, M.: Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model. J. Therm. Stresses 29, 37–55 (2006)

    Article  Google Scholar 

  • Mirzavand, B., Eslami, M.R., Shahsiah, R.: Effect of imperfections on thermal buckling of functionally graded cylindrical shells. AIAA J 43, 2073–2076 (2005)

    Article  Google Scholar 

  • Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  Google Scholar 

  • Montazeri, A., Rafii-Tabar, H.: Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 375, 4034–4040 (2011)

    Article  Google Scholar 

  • Mortazavi, B., Benzerara, O., Meyer, H., Bardon, J., Ahzi, S.: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60, 356–365 (2013)

    Article  Google Scholar 

  • Park, S., Gao, X.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355 (2006)

    Article  Google Scholar 

  • Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Article  Google Scholar 

  • Radhamoman, S., Enkataramana, J.: Thermal buckling of orthotropic cylindrical shells. AIAA J 13, 397–399 (1975)

    Article  Google Scholar 

  • Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009a)

    Article  Google Scholar 

  • Rafiee, M., Rafiee, J., Yu, Z.-Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009b)

    Article  Google Scholar 

  • Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z., et al.: Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010)

    Article  Google Scholar 

  • Rahaeifard, M., Kahrobaiyan, M., Ahmadian, M.: Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 539–544 (2009)

  • Reddy, J.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Sadeghi, M., Thomassie, R., Sasangohar, F.: Objective assessment of functional information requirements for patient portals. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1788–1792 (2017)

  • Sahmani, S., Aghdam, M.: A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos. Struct. 178, 97–109 (2017a)

    Article  Google Scholar 

  • Sahmani, S., Aghdam, M.: Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int. J. Mech. Sci. 131, 95–106 (2017b)

    Article  Google Scholar 

  • Sandler, J., Kirk, J., Kinloch, I., Shaffer, M., Windle, A.: Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44, 5893–5899 (2003)

    Article  Google Scholar 

  • Shaat, M., Mahmoud, F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  • Shahsiah, R., Eslami, M.: Thermal buckling of functionally graded cylindrical shell. J. Therm. Stresses 26, 277–294 (2003)

    Article  Google Scholar 

  • Shojaeian, M., Beni, Y.T.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A Phys. 112, 395–408 (2015)

    Google Scholar 

  • Soltani, P., Saberian, J., Bahramian, R.: Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory. J. Comput. Nonlinear Dyn. 11, 011002 (2016)

    Article  Google Scholar 

  • Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  • Tadi Beni, Y., Mehralian, F., Zeighampour, H.: The modified couple stress functionally graded cylindrical thin shell formulation. Mech. Adv. Mater. Struct. 23, 791–801 (2016)

    Article  MATH  Google Scholar 

  • Thangaratnam, R.K., Palaninathan, R., Ramachandran, J.: Thermal buckling of laminated composite shells. AIAA J 28, 859–860 (1990)

    Article  MATH  Google Scholar 

  • Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Vafamehr, A., Khodayar, M.E., Abdelghany, K.: Oligopolistic competition among cloud providers in electricity and data networks. IEEE Trans. Smart Grid (2017). https://doi.org/10.1109/TSG.2017.2778027

    Google Scholar 

  • Vafamehr, A., Khodayar, M.E.: Energy-aware cloud computing. Electr. J. 31, 40–49 (2018)

    Article  Google Scholar 

  • Vafamehr, A., Khodayar, M.E., Manshadi, S.D., Ahmad, I., Lin, J.: A framework for expansion planning of data centers in electricity and data networks under uncertainty. IEEE Trans. Smart Grid 6, 2283–2393 (2017)

    Google Scholar 

  • Wang, Y., Yu, J., Dai, W., Song, Y., Wang, D., Zeng, L., et al.: Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym. Compos. 36, 556–565 (2015)

    Article  Google Scholar 

  • Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)

    Article  Google Scholar 

  • Wu, H., Kitipornchai, S., Yang, J.: Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)

    Article  Google Scholar 

  • Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  • Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Safarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarpour, H., Esmailpoor Hajilak, Z. & Habibi, M. A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15, 569–583 (2019). https://doi.org/10.1007/s10999-018-9431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9431-8

Keywords

Navigation