Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions

Abstract

In this paper, the size-dependent nonlinear vibration of an electrostatic nanobeam actuator is investigated based on the nonlocal strain gradient theory, incorporating surface effects. A comprehensive model regarding the von Karman geometrical nonlinearity, inter-molecular forces and both components of the electrostatic excitation (AC and DC) is proposed to explore the system behavior near the primary resonance. Utilizing Hamilton’s principle, the nonlinear equation of motion of the system is derived. The natural frequency and dynamic response of the system, comprising frequency and force response diagrams, are obtained analytically via multiple scales technique in conjunction with the differential quadrature method and validated through a numerical approach. The roles of the nonlocal and strain gradient parameters, surface elasticity, inter-molecular forces and quality factor on the system oscillations are examined. The acquired results unveiled that the size-dependent parameters can significantly displace the multi-valued portions and instability thresholds of the dynamical response. Furthermore, it is deduced that the surface effects induce the stiffness hardening of the nanobeam, whereas the inter-molecular forces impose the stiffness softening effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    MATH  Article  Google Scholar 

  2. Azizi, S., Ghazavi, M.R., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76(1), 839–852 (2014)

    MATH  Article  Google Scholar 

  3. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  4. Chen, X., Meguid, S.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471(2177), 20150072 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  5. Chen, X., Meguid, S.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472(2186), 20150597 (2016)

    Article  Google Scholar 

  6. Chen, X., Meguid, S.: Dynamic behavior of micro-resonator under alternating current voltage. Int. J. Mech. Mater. Des. 13(4), 481–497 (2017a)

    Article  Google Scholar 

  7. Chen, X., Meguid, S.: Nonlinear vibration analysis of a microbeam subject to electrostatic force. Acta Mech. 228(4), 1343–1361 (2017b)

    MathSciNet  MATH  Article  Google Scholar 

  8. Dequesnes, M., Rotkin, S., Aluru, N.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1), 120 (2002)

    Article  Google Scholar 

  9. Ebrahimi, F., Barati, M.R.: Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory. Microsyst. Technol. 24(3), 1643–1658 (2018)

    Article  Google Scholar 

  10. Eltaher, M., Agwa, M., Mahmoud, F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016)

    Article  Google Scholar 

  11. Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  12. Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  13. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  14. Gupta, R.K.: Electrostaticpull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. thesis, Citeseer (1998)

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  16. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    MATH  Article  Google Scholar 

  17. Hoseinzadeh, M., Khadem, S.: A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube. Phys. E 57, 6–11 (2014)

    Article  Google Scholar 

  18. Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  19. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Cambridge (2011)

    Google Scholar 

  20. Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors. Nanotechnology 20(27), 275501 (2009)

    Article  Google Scholar 

  21. Kambali, P.N., Nikhil, V., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Modell. 43, 252–267 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  22. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Article  Google Scholar 

  23. Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68(1), 201 (2004)

    Article  Google Scholar 

  24. Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  25. Liu, C.C.: Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. Int. J. Non-Linear Mech. 82, 124–130 (2016)

    Article  Google Scholar 

  26. Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of nems electrostatic switches. Nanotechnology 21(50), 505708 (2010)

    Article  Google Scholar 

  27. Mehrdad Pourkiaee, S., Khadem, S.E., Shahgholi, M.: Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. J. Vib. Control 23(12), 1873–1889 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  28. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47(36), 365303 (2014)

    Article  Google Scholar 

  29. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N.: Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst. Technol. 21(2), 457–464 (2015)

    MATH  Article  Google Scholar 

  30. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  31. Moghimi Zand, M., Ahmadian, M.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(9), 2037–2047 (2010)

    Article  Google Scholar 

  32. Mohammadi, M., Eghtesad, M., Mohammadi, H.: Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int. J. Mech. Mater. Des. 14(3), 417–442 (2018)

    Article  Google Scholar 

  33. Najar, F., El-Borgi, S., Reddy, J., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117–128 (2015)

    Article  Google Scholar 

  34. Nayfeh, A.: Introduction to perturbation techniques. Wiley classics library, Wiley. https://books.google.com/books?id=kzbvAAAAMAAJ (1981). Accessed 10 Sept 2018

  35. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1–2), 153–163 (2007)

    MATH  Article  Google Scholar 

  36. Nikpourian, A., Ghazavi, M.R., Azizi, S.: On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int. J. Mech. Mater. Des. 14, 1–19 (2016)

    Article  Google Scholar 

  37. Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I.: Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Appl. Math. Modell. 62, 207–222 (2018)

    MathSciNet  Article  Google Scholar 

  38. Pradiptya, I., Ouakad, H.M.: Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory. Int. J. Mech. Mater. Des. 14(3), 393–415 (2018)

    Article  Google Scholar 

  39. Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B Eng. 45(1), 581–586 (2013)

    Article  Google Scholar 

  40. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  41. Vatankhah, R., Kahrobaiyan, M., Alasty, A., Ahmadian, M.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Modell. 37(18–19), 8363–8382 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  42. Wang, K., Wang, B.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)

    Article  Google Scholar 

  43. Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications. Elsevier Science. https://books.google.com/books?id=7SXbBQAAQBAJ (2015). Accessed 10 Sept 2018

  44. Yang, J., Jia, X., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41(3), 035103 (2008)

    Article  Google Scholar 

  45. Yang, W., Wang, X.: Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int. J. Mech. Sci. 107, 34–42 (2016)

    Article  Google Scholar 

  46. Yang, W., Li, Y., Wang, X.: Scale-dependent dynamic-pull-in of functionally graded carbon nanotubes reinforced nanodevice with piezoelectric layer. J. Aerosp. Eng. 30(3), 04016096 (2016a)

    Article  Google Scholar 

  47. Yang, W., Yang, F., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors Actuators A Phys. 248, 10–21 (2016b)

    Article  Google Scholar 

  48. Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanoletters 6(4), 583–586 (2006)

    Article  Google Scholar 

  49. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Book  Google Scholar 

  50. Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siamak Esmaeilzade Khadem.

Appendix

Appendix

$$\begin{aligned} \begin{aligned}&{\varGamma }_1(f_1(x,t),f_2(x,t))=\zeta _1 \int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial f_2}{\partial x} {\mathrm {d}}x -2 \beta ^2 \zeta _1\int _0^1 \frac{\partial ^2 f_1}{\partial x^2}\frac{\partial ^2 f_2}{\partial x^2} {\mathrm {d}}x \\&{\varGamma }_2(f_1(x,t),f_2(x,t))=-2 \beta ^2 \zeta _1\int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial ^3 f_2}{\partial x^3} {\mathrm {d}}x\\&K_1(w) = \kappa _1 V_{dc}^2 \left( \frac{6\alpha ^2}{(1-w)^4}+\frac{1.3\lambda \alpha ^2}{(1-w)^3} \right) +\kappa _2\left( \frac{12\alpha ^2}{(1-w)^5}\right) +\kappa _3\left( \frac{20\alpha ^2}{(1-w)^6}\right) \\&K_2(w) = \kappa _1 V_{dc}^2 \left( \frac{2\alpha ^2}{(1-w)^3}+\frac{0.65\lambda \alpha ^2}{(1-w)^2}\right) + \kappa _2 \left( \frac{3\alpha ^2}{(1-w)^4}\right) + \kappa _3 \left( \frac{4\alpha ^2}{(1-w)^5}\right) \\&K_3(w) = \kappa _1 V_{dc}^2 \left( -\frac{1}{(1-w)^2}-\frac{0.65 \lambda }{( 1-w)}\right) + \kappa _2 \left( -\frac{1}{(1-w)^3}\right) + \kappa _3 \left( - \frac{1}{(1-w)^4}\right) . \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned} \gamma (x)=&\left( 3{\varGamma }_1(\phi ,\phi )+3{\varGamma }_2(\phi ,\phi ) + 2{\varGamma }_1(w_s,\psi _1)+4{\varGamma }_1(w_s,\psi _2) +{\varGamma }_2(w_s,\psi _1)+2{\varGamma }_2(w_s,\psi _2)\right. \\ {}&\left. +{\varGamma }_2(\psi _1,w_s)+2{\varGamma }_2(\psi _2,w_s) \right) \left( \phi ^{(2)}-\alpha ^2 \phi ^{(4)}\right) + \left( 2{\varGamma }_1(w_s,\phi )+{\varGamma }_2(w_s,\phi )+{\varGamma }_2(\phi ,w_s) \right) \\ {}&\left( \psi _1^{(2)}+2\psi _2^{(2)} -\alpha ^2 \psi _1^{(4)}-2\alpha ^2\psi _2^{(4)} \right) + \left( 2{\varGamma }_1(\phi ,\psi _1)+4{\varGamma }_1(\phi ,\psi _2) +{\varGamma }_2(\phi ,\psi _1)+2{\varGamma }_2(\phi ,\psi _2) \right. \\&\left. +{\varGamma }_2(\psi _1,\phi )+2{\varGamma }_2(\psi _2,\phi ) \right) \left( w_s^{(2)} - \alpha ^2 w_s^{(4)}\right) -K_1(w_s) \left( 2\phi ^{(1)} \psi _1^{(1)}+4\phi ^{(1)}\psi _2^{(1)}\right) \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\left( \psi _1^{(1)}+2\psi _2^{(1)}\right) +3\left( \phi ^{(1)}\right) ^2\right) + K_2'(w_s) \left( \psi _1^{(2)}+2\psi _2^{(2)}\right) \right) \phi \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2'(w_s) \left( \phi ^{(2)}\right) \right) (\psi _1+2\psi _2) \\&-\left( K_1''(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2''(w_s) \left( \phi ^{(2)}\right) \right) \frac{3\phi ^2}{2} \\&-\left( K_1''(w_s) \left( w_s^{(1)}\right) ^2 + K_2''(w_s) \left( w_s^{(2)}\right) + K_3''(w_s) \right) \left( \phi (\psi _1+2\psi _2)\right) \\&-\left( K_1'''(w_s) \left( w_s^{(1)}\right) ^2 + K_2'''(w_s) \left( w_s^{(2)}\right) + K_3'''(w_s) \right) \frac{\phi ^3}{2} \end{aligned} \end{aligned}$$
(A.2)
$$\begin{aligned} \begin{aligned}&-\beta ^2 \sum _{j=1}^{N}A_{ij}^{(6)} \phi _{j}+\sum _{j=1}^{N}A_{ij}^{(4)} \phi _{j}-\Bigg ( \zeta _1\sum _{i=1}^{N}C_i\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^{2} -2\beta ^2 \zeta _1\sum _{i=1}^{N}C_i\bigg (\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )^{2}+\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\cdot A_{ij}^{(3)} w_{s_j}\bigg ) \\&+\zeta _2 \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} \phi _j-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}\phi _j\Bigg ) \\&-\Bigg ( 2\zeta _1\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )- 4\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(2)} w_{s_j}\bigg )\bigg (A_{ij}^{(2)} \phi _j\bigg )-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(3)} \phi _j\bigg ) \\&-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(3)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg ) \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j} -\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}w_{s_j}\Bigg ) \\&+K_1(w_{s_i})\Bigg (2\sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )\Bigg ) + K_2(w_{s_i})\Bigg (\sum _{j=1}^{N}A_{ij}^{(2)} \phi \Bigg ) \\&+\Bigg ( K_1'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^2 + K_2'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )+ K_3'(w_{s_i}) \Bigg )\phi _i=\omega ^2 \Bigg ( \phi _i-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(2)} \phi _j \Bigg ). \end{aligned} \end{aligned}$$
(A.3)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esfahani, S., Esmaeilzade Khadem, S. & Ebrahimi Mamaghani, A. Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int J Mech Mater Des 15, 489–505 (2019). https://doi.org/10.1007/s10999-018-9424-7

Download citation

Keywords

  • Nanobeam actuator
  • Nonlocal strain gradient theory
  • Surface effects
  • Inter-molecular forces
  • Nonlinear vibration
  • Differential quadrature method (DQM)