Skip to main content
Log in

Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, the size-dependent nonlinear vibration of an electrostatic nanobeam actuator is investigated based on the nonlocal strain gradient theory, incorporating surface effects. A comprehensive model regarding the von Karman geometrical nonlinearity, inter-molecular forces and both components of the electrostatic excitation (AC and DC) is proposed to explore the system behavior near the primary resonance. Utilizing Hamilton’s principle, the nonlinear equation of motion of the system is derived. The natural frequency and dynamic response of the system, comprising frequency and force response diagrams, are obtained analytically via multiple scales technique in conjunction with the differential quadrature method and validated through a numerical approach. The roles of the nonlocal and strain gradient parameters, surface elasticity, inter-molecular forces and quality factor on the system oscillations are examined. The acquired results unveiled that the size-dependent parameters can significantly displace the multi-valued portions and instability thresholds of the dynamical response. Furthermore, it is deduced that the surface effects induce the stiffness hardening of the nanobeam, whereas the inter-molecular forces impose the stiffness softening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  • Azizi, S., Ghazavi, M.R., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76(1), 839–852 (2014)

    Article  MATH  Google Scholar 

  • Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  • Chen, X., Meguid, S.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471(2177), 20150072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Meguid, S.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472(2186), 20150597 (2016)

    Article  Google Scholar 

  • Chen, X., Meguid, S.: Dynamic behavior of micro-resonator under alternating current voltage. Int. J. Mech. Mater. Des. 13(4), 481–497 (2017a)

    Article  Google Scholar 

  • Chen, X., Meguid, S.: Nonlinear vibration analysis of a microbeam subject to electrostatic force. Acta Mech. 228(4), 1343–1361 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dequesnes, M., Rotkin, S., Aluru, N.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1), 120 (2002)

    Article  Google Scholar 

  • Ebrahimi, F., Barati, M.R.: Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory. Microsyst. Technol. 24(3), 1643–1658 (2018)

    Article  Google Scholar 

  • Eltaher, M., Agwa, M., Mahmoud, F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016)

    Article  Google Scholar 

  • Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  • Gupta, R.K.: Electrostaticpull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. thesis, Citeseer (1998)

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  • Hoseinzadeh, M., Khadem, S.: A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube. Phys. E 57, 6–11 (2014)

    Article  Google Scholar 

  • Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Cambridge (2011)

    Google Scholar 

  • Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors. Nanotechnology 20(27), 275501 (2009)

    Article  Google Scholar 

  • Kambali, P.N., Nikhil, V., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Modell. 43, 252–267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  • Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68(1), 201 (2004)

    Article  Google Scholar 

  • Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C.C.: Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. Int. J. Non-Linear Mech. 82, 124–130 (2016)

    Article  Google Scholar 

  • Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of nems electrostatic switches. Nanotechnology 21(50), 505708 (2010)

    Article  Google Scholar 

  • Mehrdad Pourkiaee, S., Khadem, S.E., Shahgholi, M.: Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. J. Vib. Control 23(12), 1873–1889 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47(36), 365303 (2014)

    Article  Google Scholar 

  • Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N.: Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst. Technol. 21(2), 457–464 (2015)

    Article  MATH  Google Scholar 

  • Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  • Moghimi Zand, M., Ahmadian, M.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(9), 2037–2047 (2010)

    Article  Google Scholar 

  • Mohammadi, M., Eghtesad, M., Mohammadi, H.: Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int. J. Mech. Mater. Des. 14(3), 417–442 (2018)

    Article  Google Scholar 

  • Najar, F., El-Borgi, S., Reddy, J., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117–128 (2015)

    Article  Google Scholar 

  • Nayfeh, A.: Introduction to perturbation techniques. Wiley classics library, Wiley. https://books.google.com/books?id=kzbvAAAAMAAJ (1981). Accessed 10 Sept 2018

  • Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1–2), 153–163 (2007)

    Article  MATH  Google Scholar 

  • Nikpourian, A., Ghazavi, M.R., Azizi, S.: On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int. J. Mech. Mater. Des. 14, 1–19 (2016)

    Article  Google Scholar 

  • Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I.: Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Appl. Math. Modell. 62, 207–222 (2018)

    Article  MathSciNet  Google Scholar 

  • Pradiptya, I., Ouakad, H.M.: Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory. Int. J. Mech. Mater. Des. 14(3), 393–415 (2018)

    Article  Google Scholar 

  • Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B Eng. 45(1), 581–586 (2013)

    Article  Google Scholar 

  • Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Vatankhah, R., Kahrobaiyan, M., Alasty, A., Ahmadian, M.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Modell. 37(18–19), 8363–8382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, K., Wang, B.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)

    Article  Google Scholar 

  • Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications. Elsevier Science. https://books.google.com/books?id=7SXbBQAAQBAJ (2015). Accessed 10 Sept 2018

  • Yang, J., Jia, X., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41(3), 035103 (2008)

    Article  Google Scholar 

  • Yang, W., Wang, X.: Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int. J. Mech. Sci. 107, 34–42 (2016)

    Article  Google Scholar 

  • Yang, W., Li, Y., Wang, X.: Scale-dependent dynamic-pull-in of functionally graded carbon nanotubes reinforced nanodevice with piezoelectric layer. J. Aerosp. Eng. 30(3), 04016096 (2016a)

    Article  Google Scholar 

  • Yang, W., Yang, F., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors Actuators A Phys. 248, 10–21 (2016b)

    Article  Google Scholar 

  • Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanoletters 6(4), 583–586 (2006)

    Article  Google Scholar 

  • Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Book  Google Scholar 

  • Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Esmaeilzade Khadem.

Appendix

Appendix

$$\begin{aligned} \begin{aligned}&{\varGamma }_1(f_1(x,t),f_2(x,t))=\zeta _1 \int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial f_2}{\partial x} {\mathrm {d}}x -2 \beta ^2 \zeta _1\int _0^1 \frac{\partial ^2 f_1}{\partial x^2}\frac{\partial ^2 f_2}{\partial x^2} {\mathrm {d}}x \\&{\varGamma }_2(f_1(x,t),f_2(x,t))=-2 \beta ^2 \zeta _1\int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial ^3 f_2}{\partial x^3} {\mathrm {d}}x\\&K_1(w) = \kappa _1 V_{dc}^2 \left( \frac{6\alpha ^2}{(1-w)^4}+\frac{1.3\lambda \alpha ^2}{(1-w)^3} \right) +\kappa _2\left( \frac{12\alpha ^2}{(1-w)^5}\right) +\kappa _3\left( \frac{20\alpha ^2}{(1-w)^6}\right) \\&K_2(w) = \kappa _1 V_{dc}^2 \left( \frac{2\alpha ^2}{(1-w)^3}+\frac{0.65\lambda \alpha ^2}{(1-w)^2}\right) + \kappa _2 \left( \frac{3\alpha ^2}{(1-w)^4}\right) + \kappa _3 \left( \frac{4\alpha ^2}{(1-w)^5}\right) \\&K_3(w) = \kappa _1 V_{dc}^2 \left( -\frac{1}{(1-w)^2}-\frac{0.65 \lambda }{( 1-w)}\right) + \kappa _2 \left( -\frac{1}{(1-w)^3}\right) + \kappa _3 \left( - \frac{1}{(1-w)^4}\right) . \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned} \gamma (x)=&\left( 3{\varGamma }_1(\phi ,\phi )+3{\varGamma }_2(\phi ,\phi ) + 2{\varGamma }_1(w_s,\psi _1)+4{\varGamma }_1(w_s,\psi _2) +{\varGamma }_2(w_s,\psi _1)+2{\varGamma }_2(w_s,\psi _2)\right. \\ {}&\left. +{\varGamma }_2(\psi _1,w_s)+2{\varGamma }_2(\psi _2,w_s) \right) \left( \phi ^{(2)}-\alpha ^2 \phi ^{(4)}\right) + \left( 2{\varGamma }_1(w_s,\phi )+{\varGamma }_2(w_s,\phi )+{\varGamma }_2(\phi ,w_s) \right) \\ {}&\left( \psi _1^{(2)}+2\psi _2^{(2)} -\alpha ^2 \psi _1^{(4)}-2\alpha ^2\psi _2^{(4)} \right) + \left( 2{\varGamma }_1(\phi ,\psi _1)+4{\varGamma }_1(\phi ,\psi _2) +{\varGamma }_2(\phi ,\psi _1)+2{\varGamma }_2(\phi ,\psi _2) \right. \\&\left. +{\varGamma }_2(\psi _1,\phi )+2{\varGamma }_2(\psi _2,\phi ) \right) \left( w_s^{(2)} - \alpha ^2 w_s^{(4)}\right) -K_1(w_s) \left( 2\phi ^{(1)} \psi _1^{(1)}+4\phi ^{(1)}\psi _2^{(1)}\right) \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\left( \psi _1^{(1)}+2\psi _2^{(1)}\right) +3\left( \phi ^{(1)}\right) ^2\right) + K_2'(w_s) \left( \psi _1^{(2)}+2\psi _2^{(2)}\right) \right) \phi \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2'(w_s) \left( \phi ^{(2)}\right) \right) (\psi _1+2\psi _2) \\&-\left( K_1''(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2''(w_s) \left( \phi ^{(2)}\right) \right) \frac{3\phi ^2}{2} \\&-\left( K_1''(w_s) \left( w_s^{(1)}\right) ^2 + K_2''(w_s) \left( w_s^{(2)}\right) + K_3''(w_s) \right) \left( \phi (\psi _1+2\psi _2)\right) \\&-\left( K_1'''(w_s) \left( w_s^{(1)}\right) ^2 + K_2'''(w_s) \left( w_s^{(2)}\right) + K_3'''(w_s) \right) \frac{\phi ^3}{2} \end{aligned} \end{aligned}$$
(A.2)
$$\begin{aligned} \begin{aligned}&-\beta ^2 \sum _{j=1}^{N}A_{ij}^{(6)} \phi _{j}+\sum _{j=1}^{N}A_{ij}^{(4)} \phi _{j}-\Bigg ( \zeta _1\sum _{i=1}^{N}C_i\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^{2} -2\beta ^2 \zeta _1\sum _{i=1}^{N}C_i\bigg (\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )^{2}+\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\cdot A_{ij}^{(3)} w_{s_j}\bigg ) \\&+\zeta _2 \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} \phi _j-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}\phi _j\Bigg ) \\&-\Bigg ( 2\zeta _1\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )- 4\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(2)} w_{s_j}\bigg )\bigg (A_{ij}^{(2)} \phi _j\bigg )-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(3)} \phi _j\bigg ) \\&-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(3)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg ) \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j} -\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}w_{s_j}\Bigg ) \\&+K_1(w_{s_i})\Bigg (2\sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )\Bigg ) + K_2(w_{s_i})\Bigg (\sum _{j=1}^{N}A_{ij}^{(2)} \phi \Bigg ) \\&+\Bigg ( K_1'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^2 + K_2'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )+ K_3'(w_{s_i}) \Bigg )\phi _i=\omega ^2 \Bigg ( \phi _i-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(2)} \phi _j \Bigg ). \end{aligned} \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, S., Esmaeilzade Khadem, S. & Ebrahimi Mamaghani, A. Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int J Mech Mater Des 15, 489–505 (2019). https://doi.org/10.1007/s10999-018-9424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9424-7

Keywords

Navigation