Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory

  • Iswan Pradiptya
  • Hassen M. OuakadEmail author


This paper proposes to investigate the nonlinear size dependent behavior of electrically actuated carbon nanotube (CNT) based nano-actuator while including the higher-order strain gradient deformation, the geometric nonlinearity due to the von Karman nonlinear strain as well as the slack effect, and the temperature gradient effects. The assumed non-classical beam model adopts some internal material size scale parameters related to the material nanostructures and is capable of interpreting the size effect that the classical continuum beam model is unable to pronounce. The higher-order governing equations of motion and boundary conditions are derived using the so-called extended Hamilton principle. A Galerkin based reduced-order model (ROM) modal decomposition is developed to prescribe the non-classical nanotube mode shape as well as its static behavior under any applied DC actuation load. Results of the static analysis is compared with those obtained by both classical elasticity continuum and strain gradient theories. A Jacobian method is utilized to determine the variation of the natural frequencies of the nanobeam with the DC load as well as the slack level. A thorough parametric study is conducted to study the influences of the size scale dependent parameters, the geometric nonlinearity, the initial curvature, the gate voltage, and the temperature gradient effect on structural behavior of the CNT-based nano-actuator. It is found that the size effect based on the strain gradient deformation has significant influence on the fundamental nanotube natural frequency dispersion. Also, varying this size effect have revealed the offering of numerous possibilities of modes veering and crossing, all shown to be dependent of the strain gradient parameters as well as the CNT slack level.


Carbon nanotube Higher-order strain gradient theory Electrostatic Slack Temperature gradient 


  1. Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012a)CrossRefzbMATHGoogle Scholar
  2. Akgöz, B., Civalek, Ö.: Investigation of size effects on static response of single-walled carbon nanotubes based on strain gradient elasticity. Int. J. Comput. Methods 09, 1240032 (2012b)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Allahkarami, F., Nikkhah-bahrami, M., Saryazdi, M.G.: Magneto-thermo-mechanical dynamic buckling analysis of a FG-CNTs-reinforced curved microbeam with different boundary conditions using strain gradient theory. Int. J. Mech. Mater. Des. 8, 1–19 (2017)Google Scholar
  4. Ansari, R., Torabi, J., Faghih Shojaei, M.: An efficient numerical method for analyzing the thermal effects on the vibration of embedded single-walled carbon nanotubes based on nonlocal shell model. Mech. Adv. Mater. Struct. (2017)Google Scholar
  5. Ansari, R., Hemmatnezhad, M., Rezapour, J.: The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Curr. Appl. Phys. 11, 692–697 (2011)CrossRefGoogle Scholar
  6. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRefGoogle Scholar
  7. Belardinelli, P., Lenci, S., Brocchini, M.: Modeling and analysis of an electrically actuated microbeam based on nonclassical beam theory. J. Comput. Nonlinear Dyn. 9, 031016 (2014)CrossRefGoogle Scholar
  8. Chen, W.-H., Wu, C.-H., Liu, Y.-L., Cheng, H.-C.: A theoretical investigation of thermal effects on vibrational behaviors of single-walled carbon nanotubes. Comput. Mater. Sci. 53, 226–233 (2012)CrossRefGoogle Scholar
  9. Duffy, D.G.: Advanced Engineering Mathematics with MATLAB. CRC Press, Boca Raton (2016)zbMATHGoogle Scholar
  10. Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T.: Dynamic behaviours of carbon nanotubes under DC voltage based on strain gradient theory. J. Phys. D Appl. Phys. 46, 405101 (2013)CrossRefGoogle Scholar
  11. Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T.: Non-linear behaviors of carbon nanotubes under electrostatic actuation based on strain gradient theory. Int. J. Non-Linear Mech. 67, 236–244 (2014)CrossRefGoogle Scholar
  12. Farid, T., Hossein Nejat, P., Mohammad Reza Hairi, Y., Ehsan Maani, M.: Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory. J. Phys. D Appl. Phys. 48, 245503 (2015)CrossRefGoogle Scholar
  13. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRefGoogle Scholar
  14. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M.J., Perez-Murano, F., Forró, L., Aguasca, A., et al.: Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99, 085501 (2007)CrossRefGoogle Scholar
  15. Ghayesh, M.H.: Nonlinear size-dependent behaviour of single-walled carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 117, 1393–1399 (2014)CrossRefGoogle Scholar
  16. Gibson, R.F., Ayorinde, E.O., Wen, Y.-F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)CrossRefGoogle Scholar
  17. Hu, N., Jia, B., Arai, M., Yan, C., Li, J., et al.: Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations. Comput. Mater. Sci. 54, 249–254 (2012)CrossRefGoogle Scholar
  18. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  19. Jiang, H., Liu, B., Huang, Y., Hwang, K.C.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265–270 (2004)CrossRefGoogle Scholar
  20. Jiang, J.-W., Wang, J.-S., Li, B.: Thermal expansion in single-walled carbon nanotubes and graphene: nonequilibrium Green’s function approach. Phys. Rev. B 80, 205429 (2009)CrossRefGoogle Scholar
  21. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)MathSciNetCrossRefGoogle Scholar
  22. Kang, J.W., Ha Lee, J., Joo Lee, H., Hwang, H.J.: A study on carbon nanotube bridge as a electromechanical memory device. Physica E 27, 332–340 (2005)CrossRefGoogle Scholar
  23. Kang, D.-K., Yang, H.-I., Kim, C.-W.: Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime. Physica E 74, 39–44 (2015)CrossRefGoogle Scholar
  24. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Koochi, A., Sedighi, H.M., Abadyan, M.: Modeling the size dependent pull-in instability of beam-type NEMS using strain gradient theory. Lat. Am. J. Solids Struct. 11, 1806–1829 (2014)CrossRefGoogle Scholar
  26. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRefzbMATHGoogle Scholar
  27. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv. 6, 105202 (2016)CrossRefGoogle Scholar
  28. Li, C., Chou, T.-W.: Axial and radial thermal expansions of single-walled carbon nanotubes. Phys. Rev. B 71, 235414 (2005)CrossRefGoogle Scholar
  29. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Mayoof, F.N., Hawwa, M.A.: Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos, Solitons Fractals 42, 1860–1867 (2009)CrossRefGoogle Scholar
  31. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47, 365303 (2014)CrossRefGoogle Scholar
  32. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  34. Namazu, T., Isono, Y., Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000)CrossRefGoogle Scholar
  35. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)zbMATHGoogle Scholar
  36. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  37. Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 1–13 (2010)CrossRefGoogle Scholar
  38. Ouakad, H.M., Younis, M.I.: Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J. Sound Vib. 330, 3182–3195 (2011a)CrossRefGoogle Scholar
  39. Ouakad, H.M., Younis, M.I.: Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 67, 1419–1436 (2011b)MathSciNetCrossRefGoogle Scholar
  40. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRefGoogle Scholar
  41. Pradiptya, I., Ouakad, H.M.: The effect of size scale parameters on the structural behavior of carbon nanotube based nano-actuator. In: 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6 (2016)Google Scholar
  42. Pugno, N., Ke, C.H., Espinosa, H.D.: Analysis of doubly clamped nanotube devices in the finite deformation regime. J. Appl. Mech. 72, 445–449 (2004)CrossRefzbMATHGoogle Scholar
  43. Rafiee, R., Moghadam, R.M.: On the modeling of carbon nanotubes: a critical review. Compos. B Eng. 56, 435–449 (2014)CrossRefGoogle Scholar
  44. Razavilar, R., Alashti, R.A., Fathi, A.: Investigation of thermoelastic damping in rectangular microplate resonator using modified couple stress theory. Int. J. Mech. Mater. Des. 12, 39–51 (2016)CrossRefGoogle Scholar
  45. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)CrossRefzbMATHGoogle Scholar
  46. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004)CrossRefGoogle Scholar
  47. Sedighi, H.M., Daneshmand, F., Zare, J.: The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect. Arch. Civil Mech. Eng. 14, 766–775 (2014)CrossRefGoogle Scholar
  48. Sedighi, H.M., Daneshmand, F., Abadyan, M.: Modified model for instability analysis of symmetric FGM double-sided nano-bridge: corrections due to surface layer, finite conductivity and size effect. Compos. Struct. 132, 545–557 (2015)CrossRefGoogle Scholar
  49. Shaat, M., Abdelkefi, A.: On a second-order rotation gradient theory for linear elastic continua. Int. J. Eng. Sci. 100, 74–98 (2016)MathSciNetCrossRefGoogle Scholar
  50. Singh, B.P., Verma, A.: Thermal expansion in single-walled carbon nanotubes at different temperatures. Int. J. Nanosci. 07, 305–313 (2008)CrossRefGoogle Scholar
  51. Üstünel, H., Roundy, D., Arias, T.A.: Modeling a suspended nanotube oscillator. Nano Lett. 5, 523–526 (2005)CrossRefGoogle Scholar
  52. Wang, L., Ni, Q., Li, M., Qian, Q.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E 40, 3179–3182 (2008)CrossRefGoogle Scholar
  53. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29, 591–599 (2010)CrossRefGoogle Scholar
  54. Xu, X.J., Deng, Z.C.: Closed-form frequency solutions for simplified strain gradient beams with higher-order inertia. Eur. J. Mech. A. Solids 56, 59–72 (2016)MathSciNetCrossRefGoogle Scholar
  55. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)CrossRefGoogle Scholar
  56. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefzbMATHGoogle Scholar
  57. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)CrossRefGoogle Scholar
  58. Zhang, C.-L., Shen, H.-S.: Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation. Appl. Phys. Lett. 89, 081904 (2006)CrossRefGoogle Scholar
  59. Zhao, J., Zhou, S., Wang, B., Wang, X.: Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36, 2674–2686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations