An extended layerwise/solid-element method of stiffened composite plates with delaminations and transverse crack

  • X. Lu
  • J. Y. Yang
  • Y. G. Wu
  • F. Zhang
  • D. H. LiEmail author


The stiffened composite plates with the transverse crack and delamination were studied in this paper, and an extended layerwise/solid-element (XLW/SE) method was developed. In the proposed method, the governing equations of composite plates and stiffeners were established based on the extended layerwise method and 3D solid elements, respectively. The final governing equation of stiffened composite plates is assembled by using the compatibility conditions and internal force equilibrium conditions at the joint interface between the plates and stiffeners. For the stiffened composite plates with damages, the XLW/SE method can obtain the local stress and displacement fields accurately and simulate the in-plane transverse cracks and delaminations simultaneously, considering complicated stiffeners without any assumptions. In the numerical examples, the results obtained by the proposed method are compared with those obtained by the 3D elastic models developed in the general finite element code, and the good agreements were achieved for the stiffened composite plates with/without delaminations and/or transverse crack.


Stiffened composite plates Extended layerwise method Delamination Transverse crack 



Funding was provided by the National Natural Science Foundations of China (11502286), Natural Science Foundations of Tianjin (17JCQNJC02600) and Fundamental Research Funds for the Central Universities (3122017021,3122017034).


  1. Ambartsumian, S.A.: On a general theory of anisotropic shells. J. Appl. Math. Mech. 22(2), 305–319 (1958)MathSciNetCrossRefGoogle Scholar
  2. Ambartsumian, S.: Contributions to the theory of anisotropic layered shells. Appl. Mech. Rev. 15(4), 245–249 (1962)Google Scholar
  3. Bisagni, C.: Progressive delamination analysis of stiffened composite panels in post-buckling. Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, and Materials Conference, Aiaa/asme/ahs Adaptive Structures Conference, pp. 161–162 (2006)Google Scholar
  4. Carrera, E.: Evaluation of layerwise mixed theories for laminated plates analysis. AIAA J. 36(36), 830–839 (1998a)CrossRefGoogle Scholar
  5. Carrera, E.: Layer-wise mixed models for accurate vibrations analysis of multilayered plates. J. Appl. Mech. 65(4), 820–828 (1998b)CrossRefGoogle Scholar
  6. Carrera, E.: Mixed layer-wise models for multilayered plates analysis. Compos. Struct. 43(1), 57–70 (1998c)CrossRefGoogle Scholar
  7. Carrera, E.: Multilayered shell theories accounting for layerwise mixed description, part 2: numerical evaluations. AIAA J. 37(9), 1117–1124 (1999)CrossRefGoogle Scholar
  8. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Carrera, E.: Multilayered shell theories accounting for layerwise mixed description, part 1: governing equations. AIAA J. 37(9), 1107–1116 (2012)CrossRefGoogle Scholar
  10. Chen, H.R., Bai, R.X.: Study on delaminatiosn for composite stiffened structures. Appl. Math. Mech. 25, 368–378 (2004)Google Scholar
  11. Chen, H., Jin, Y.U., Bai, R.: Study on delamination onset and growth process for composite advanced isogrid stiffened structures(ags). Fuhe Cailiao Xuebao/acta Materiae Compositae Sinica 25(2), 173–177 (2008)Google Scholar
  12. Faggiani, A., Falzon, B.G.: Optimization strategy for minimizing damage in postbuckling stiffened panels. AIAA J. 45(10), 2520–2528 (2007)CrossRefGoogle Scholar
  13. Gotsis, P.K., Chamis, C.C., David, K., Abdi, F.: Progressive fracture of laminated composite stiffened plate. Theor. Appl. Fract. Mech. 51(2), 144–147 (2009)CrossRefGoogle Scholar
  14. Greenhalgh, E., Singh, S., Hughes, D., Roberts, D.: Impact damage resistance and tolerance of stringer stiffened composite structures. Plast. Rubber Compos. 28(5), 228–251 (1999)CrossRefGoogle Scholar
  15. Hyer, M.W., Cohen, D.: Calculation of stresses in stiffened composite panels. AIAA J. 26(7), 852–857 (1988)CrossRefzbMATHGoogle Scholar
  16. Ishikawa, T., Matsushima, M., Hayashi, Y.: Improved correlation of predicted and experimental initial buckling stresses of composite stiffened panels. Compos. Struct. 26(1–2), 25–38 (1993)CrossRefGoogle Scholar
  17. Kong, C.W., Hong, C.S., Kim, C.G.: Postbuckling strength of stiffened composite plates with impact damage. AIAA J. 38(10), 1956–1964 (2000)CrossRefGoogle Scholar
  18. Li, D.: Extended layerwise method of laminated composite shells. Compos. Struct. 136, 313–344 (2016)CrossRefGoogle Scholar
  19. Li, D., Liu, Y., Zhang, X.: A layerwise/solid-element method of the linear static and free vibration analysis for the composite sandwich plates. Compos. Part B Eng. 52(52), 187–198 (2013)CrossRefGoogle Scholar
  20. Li, D.H., Liu, Y., Zhang, X.: An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks. Int. J. Numer. Methods Eng. 101(6), 407–434 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Li, D.H., Zhang, X., Sze, K.Y., Liu, Y.: Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks. Comput. Mech. 58, 657–679 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Reddy, J .N.: Mechanics of Laminated Composite Plates and Shells :Theory and Analysis. CRC Press, Boca Raton (2004)zbMATHGoogle Scholar
  23. Reissner, E.: On a certain mixed variational theorem and a proposed application. Int. J. Numer. Methods Eng. 20(7), 1366–1368 (1984)CrossRefzbMATHGoogle Scholar
  24. Reissner, E.: On a mixed variational theorem and on shear deformable plate theory. Int. J. Numer. Methods Eng. 23(2), 193–198 (2005)CrossRefzbMATHGoogle Scholar
  25. Riccio, A., Giordano, M., Zarrelli, M.: A linear numerical approach to simulate the delamination growth initiation in stiffened composite panels. J. Compos. Mater. 44(44), 1841–1866 (2010)CrossRefGoogle Scholar
  26. Riccio, A., Raimondo, A., Scaramuzzino, F.: A study on skin delaminations growth in stiffened composite panels by a novel numerical approach. Appl. Compos. Mater. 20(4), 465–488 (2013)CrossRefGoogle Scholar
  27. Riccio, A., Damiano, M., Raimondo, A., Felice, G.D., Sellitto, A.: A fast numerical procedure for the simulation of inter-laminar damage growth in stiffened composite panels. Compos. Struct. 145, 203–216 (2016)CrossRefGoogle Scholar
  28. Samaratunga, D., Jha, R., Gopalakrishnan, S.: Wavelet spectral finite element for modeling guided wave propagation and damage detection in stiffened composite panels. Struct. Health Monit. 15, 317–334 (2016)CrossRefGoogle Scholar
  29. Suemasu, H., Kurihara, K., Arai, K., Majima, O., Ishikawa, T.: Compressive property degradation of composite stiffened panel due to debonding and delaminations. Adv. Compos. Mater. 15(2), 139–151 (2006)CrossRefGoogle Scholar
  30. Thomson, R.S., Scott, M.L.: Modelling delaminations in postbuckling stiffened composite shear panels. Comput. Mech. 26(1), 75–89 (2000)CrossRefzbMATHGoogle Scholar
  31. Whitcomb, J.D.: Finite element analysis of instability related delamination growth. J. Compos. Mater. 15(5), 403–426 (1981)CrossRefGoogle Scholar
  32. Yetman, J.E., Sobey, A.J., Blake, J.I.R., Shenoi, R.A.: Investigation into skin stiffener debonding of top-hat stiffened composite structures. Compos. Struct. 132, 1168–1181 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • X. Lu
    • 1
  • J. Y. Yang
    • 1
  • Y. G. Wu
    • 1
  • F. Zhang
    • 1
  • D. H. Li
    • 1
    Email author
  1. 1.College of Aeronautical EngineeringCivil Aviation University of ChinaTianjinPeople’s Republic of China

Personalised recommendations