Skip to main content
Log in

Nonlinear elastoplastic analysis of pressure sensitive materials

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

When structures undergo extreme loading conditions, the materials pass the elastic limits. Therefore, to preserve economy as well as safety, it is essential to perform a realistic elastoplastic analysis using the constitutive equations in plasticity. On the other hand, computing the stress alongside its associated variables on Gauss points is a delicate process and virtually the most important part of these analyses. In this study, an efficient stress-updating technique is presented for the constitutive rate equations of the pressure sensitive materials such as concrete, rock, soil and some kind of metals. Accordingly, the Drucker–Prager plasticity is utilized to consider the hydrostatic pressure in addition to the J 2-invariant of the deviatoric stress. Moreover, the isotropic and kinematic hardenings are used to take into account more realistic behavior of the materials. Finally, a wide range of numerical tests is carried out to show the performance of the presented method together with the application of the suggested formulations in elastoplastic analysis of a gravity dam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Artioli, E., Auricchio, F., Beirão da Veiga, L.: A novel ‘optimal’ exponential-based integration algorithm for von-Mises plasticity with linear hardening: theoretical analysis on yield consistency, accuracy, convergence and numerical investigations. Int. J. Numer. Methods Eng. 67(4), 449–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Artioli, E., Auricchio, F., Beirão da Veiga, L.: Second-order accurate integration algorithms for von-Mises plasticity with a nonlinear kinematic hardening mechanism. Comput. Methods Appl. Mech. Eng. 196, 1827–1846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Auricchio, F., Beirão da Veiga, L.: On a new integration scheme for von-Mises plasticity with linear hardening. Int. J. Numer. Methods Eng. 56, 1375–1396 (2003)

    Article  MATH  Google Scholar 

  • Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41, 2855–2878 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bilotta, A., Turco, E.: Elastoplastic analysis of pressure-sensitive materials by an effective three-dimensional mixed finite element. ZAMM J. Appl. Math. Mech. (Zeitschrift fur Angewandte Mathematik und Mechanik) (2016). doi: 10.1002/zamm.201600051

  • Chawla, A.S., Thakur, R.K., Kumar, A.: Optimum location of drains in concrete dams. J. Hydraulic Eng. 116(7), 930–943 (1990)

    Article  Google Scholar 

  • Chen, B., Yuan, Y.: Hydrodynamic pressures on arch dam during earthquakes. J. Hydraulic Eng. 173(1), 34–44 (2011)

    Article  MathSciNet  Google Scholar 

  • Design of Gravity Dams: Design Manual for Concrete Gravity Dams. Bureau of Reclamation. A water resources technical publication, Denver (1976)

    Google Scholar 

  • Dodds, R.H.: Numerical techniques for plasticity computations in finite element analysis. Comput. Struct. 26(5), 767–779 (1987)

    Article  MATH  Google Scholar 

  • Hong, H.-K., Liu, C.-S.: Internal symmetry in the constitutive model of perfect elasto-plasticity. Int. J. Non-Linear Mech. 35, 447–466 (2000)

    Article  MATH  Google Scholar 

  • Kobayashi, M., Ohno, N.: Implementation of cyclic plasticity models based on a general form of kinematic hardening. Int. J. Numer. Methods Eng. 53, 2217–2238 (2002)

    Article  MATH  Google Scholar 

  • Krieg, R.D., Krieg, D.B.: Accuracies of numerical solution methods for the elastic-perfectly plastic model. ASME J. Press. Vessel Technol. 99, 510–515 (1977)

    Article  Google Scholar 

  • Liu, P., Cheng, A.: Boundary solutions for fluid-structure interaction. J. Hydraulic Eng. 110(1), 51–64 (1984)

    Article  Google Scholar 

  • Liu, C., Liu, L., Hong, H.: A scheme of automatic stress-updating on yield surfaces for a class of elastoplastic models. Int. J. Non-Linear Mech. 85, 6–22 (2016)

    Article  Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C.: Accurate integration scheme for von-Mises plasticity with mixed-hardening based on exponential maps. Eng. Comput. 24(6), 608–635 (2007)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C., Sharifian, M.: Application of exponential-based methods in integrating the constitutive equations with multicomponent nonlinear kinematic hardening. ASCE J. Eng. Mech. 136(12), 1502–1518 (2010)

    Article  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Accurate and approximate integrations of Drucker–Prager plasticity with linear isotropic and kinematic hardening. Eur. J. Mech. A/Solids 30, 345–361 (2011)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M.: A novel formulation for integrating nonlinear kinematic hardening Drucker–Prager’s yield condition. Eur. J. Mech. A/Solids 31, 163–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Angles based integration for generalized non-linear plasticity model. Int. J. Mech. Sci. 87, 241–257 (2014)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Auricchio, F., Sharifian, M., Sharifian, M.: Exponential-based integration for BigoniePiccolroaz plasticity model. Eur. J. Mech. A/Solids 51, 107–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., Hughes, T.J.R.: Computational inelasticity, Springer, New York (1998)

  • Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elasto-plasticity. Int. J. Numer. Methods Eng. 22, 649–670 (1986)

    Article  MATH  Google Scholar 

  • Sloan, S.W., Booker, J.R.: Integration of Tresca and Mohr–Coulomb constitutive relations in plane strain elasto-plasticity. Int. J. Numer. Methods Eng. 33, 163–196 (1992)

    Article  MATH  Google Scholar 

  • Szabó, L., Kossa, A.: A new exact integration method for the Drucker–Prager elastoplastic model with linear isotropic hardening. Int. J. Solids Struct. 49, 170–190 (2012)

    Article  Google Scholar 

  • Tedesco, F., Bilotta, A., Turco, E.: Multiscale 3D mixed FEM analysis of historical masonry constructions. Eur. J. Environ. Civil Eng. (2016). doi:10.1080/19648189.2015.1134676

    Google Scholar 

  • Wallin, M., Ristinmaa, M.: Accurate stress updating algorithm based on constant strain rate assumption. Comput. Methods Appl. Mech. Eng. 190, 5583–5601 (2001)

    Article  MATH  Google Scholar 

  • Wilkins, M.L.: Calculation of elastic-plastic flow. Method of Computational Physics 3, Academic Press (1964)

  • Yoder, P.J., Whirley, R.G.: On the numerical implementation of elasto-plastic models. ASME J. Appl. Mech. 51, 283–288 (1984)

    Article  MATH  Google Scholar 

  • Zee, C., Zee, R.: Earthquake hydrodynamic pressure on dams. J. Hydraulic Eng. 132(11), 1128–1133 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

The financial supports from Khorasan Razavi Regional Water Authority are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Sharifian.

Appendices

Appendix A: Computing the factor to determine the complete-elastic and elastic–plastic parts of the load step

The scalar factor \( \alpha \) addressed in stress-computing method section is computed by solving a second-order equation obtained from \( F({\mathbf{s^{\prime}}}_{n} + \alpha 2G\Delta {\mathbf{e}},p^{\prime}_{n} + \alpha K\Delta {\varvec{{\varepsilon}}}_{\text{v}} ,\tau_{\text{y,n}} ) = 0 \) as follows

$$ \begin{aligned} \alpha = \frac{{\sqrt {B^{2} - 4AC} - B}}{2A} \hfill \\ A = \left\| {2G\Delta {\mathbf{e}}} \right\|^{2} - 2\left( {\beta K\Delta {\varvec{{\varepsilon}}}_{\text{v}} } \right)^{2} \hfill \\ B = 4G\Delta {\mathbf{e}}^{\text{T}} {\mathbf{s^{\prime}}}_{n} + 4\beta K\left( {\tau_{\text{y,n}} - \beta p^{\prime}_{n} } \right)\Delta {\varvec{{\varepsilon}}}_{\text{v}} \hfill \\ C = \left\| {{\mathbf{s^{\prime}}}_{n} } \right\|^{2} - 2\left( {\tau_{\text{y,n}} - \beta p^{\prime}_{n} } \right)^{2} \hfill \\ \end{aligned} $$
(A1)

Appendix B: Computing the derivatives addressed in consistent tangent operator section

Here, it is aimed to derive the derivatives \({{{\partial} {\mathbf{X}}_{n + \alpha }^{\text{s}} } \mathord{\left/ {\vphantom {{{\partial} {\mathbf{X}}_{n + \alpha }^{\text{s}} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\), \({{\partial X_{n + 1}^{0} } \mathord{\left/ {\vphantom {{\partial X_{n + 1}^{0} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\), \( {{\partial\Delta {\mathbf{e}}^{\text{p}} } \mathord{\left/ {\vphantom {{\partial\Delta {\mathbf{e}}^{\text{p}} } \partial }} \right. \kern-0pt} \partial }\upvarepsilon \) and \({{\partial \left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|} \mathord{\left/ {\vphantom {{\partial \left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|} \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) appeared in Eqs. (54) to (56). To compute \( {{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} } \mathord{\left/ {\vphantom {{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} } \partial }} \right. \kern-0pt} \partial }{\varvec{{\varepsilon}}} \), it is needed to take the derivatives of Eqs. (35) and (38) given as,

$$ \frac{{\partial {\mathbf{X}}_{n + 1}^{\text{s}} }}{\partial {\varvec\upvarepsilon} } = \frac{{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} }}{\partial {\varvec\upvarepsilon} } + \left( {\Delta \hat{{\varvec{\psi}} }^{\text{T}} {\mathbf{X}}_{n + \alpha }^{\text{s}} } \right)\Delta \hat{{\varvec{\psi}} }\frac{\partial a}{\partial {\varvec\upvarepsilon} } + (a - 1)\Delta \hat{{\varvec{\psi}} }\left( {\frac{{\partial\Delta \hat{{\varvec{\psi}} }}}{\partial {\varvec\upvarepsilon} }{\mathbf{X}}_{n + \alpha }^{\text{s}} } \right)^{\text{T}} + (a - 1)\Delta \hat{{\varvec{\psi}} }\left( {\frac{{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} }}{\partial {\varvec\upvarepsilon} }\Delta \hat{{\varvec{\psi}} }} \right)^{\text{T}} + (a - 1)\left( {\Delta \hat{{\varvec{\psi}} }^{\text{T}} {\mathbf{X}}_{n + \alpha }^{\text{s}} } \right)\frac{{\partial\Delta \hat{{\varvec{\psi}} }}}{\partial \varvec {\upvarepsilon} } + X_{n + 1}^{\text{R}}\Delta \hat{{\varvec{\psi}} }\frac{\partial b}{\partial \varvec {\upvarepsilon} } + b\Delta \hat{{\varvec{\psi}} }\frac{{\partial X_{n + \alpha }^{\text{R}} }}{\partial \varvec {\upvarepsilon} } + bX_{n + 1}^{\text{R}} \frac{{\partial\Delta \hat{{\varvec{\psi}} }}}{\partial {\varvec \upvarepsilon} } $$
(A65)

In the above equation, \({{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} } \mathord{\left/ {\vphantom {{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) can be calculated by

$$ \frac{{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} }}{\partial {\varvec {\upvarepsilon}} } = X_{n + \alpha }^{0} \frac{{\partial {\mathbf{s^{\prime}}}_{n + \alpha } }}{\partial {\varvec {\upvarepsilon}} }{\text{ with }}\frac{{\partial {\mathbf{s^{\prime}}}_{n + \alpha } }}{\partial \varvec {\upvarepsilon} } = 2G\Delta {\mathbf{e}}\frac{\partial \alpha }{\partial {\varvec {\upvarepsilon}} } + 2G\alpha \frac{{\partial\Delta {\mathbf{e}}}}{\partial {\varvec\upvarepsilon} } $$
(A66)

where,

$$ \begin{aligned} \frac{{\partial\Delta {\mathbf{e}}}}{\partial \varvec\upvarepsilon } = {{\mathbb{I}}\ominus }_{\text{dev}} \hfill \\ \frac{\partial \alpha }{\partial \varvec\upvarepsilon } = - \left( {\frac{C}{{A\sqrt {B^{2} - 4AC} }} + \frac{{\sqrt {B^{2} - 4AC} - B}}{{2A^{2} }}} \right)\left( {8G^{2}\Delta {\mathbf{e}} - 4\beta^{2} K^{2}\Delta {\varvec{{\varepsilon}}}_{\text{v}} {\mathbf{i}}} \right) + \left( {\frac{B}{{2A\sqrt {B^{2} - 4AC} }} - \frac{1}{2A}} \right)\left( {4G{\mathbb{I}}_{\text{dev}} {\mathbf{s^{\prime}}}_{n} + 4\beta K\left( {\tau_{\text{y,n}} - \beta p^{\prime}_{n} } \right){\mathbf{i}}} \right) \hfill \\ \end{aligned} $$
(A67)

Also, the derivatives \({{\partial a} \mathord{\left/ {\vphantom {{\partial a} \partial }} \right. \kern-0pt} \partial }{\varvec{\upvarepsilon}}\) and \({{\partial b} \mathord{\left/ {\vphantom {{\partial b} \partial }} \right. \kern-0pt} \partial }{\varvec{\upvarepsilon}}\) are obtained through

$$ \begin{aligned} \frac{\partial a}{\partial {\varvec {\upvarepsilon}} } = \sinh (g)\frac{\partial g}{\partial {\varvec {\upvarepsilon}} } \hfill \\ \frac{\partial b}{\partial {\varvec {\upvarepsilon}} } = \cosh (g)\frac{\partial g}{\partial {\varvec {\upvarepsilon}} } \hfill \\ \end{aligned} $$
(A68)
$$ \frac{\partial g}{\partial {\varvec {\upvarepsilon}} } = \frac{1}{{R_{n + \alpha } }}\frac{{\partial\Delta {\varvec{\psi}} }}{\partial {\varvec {\upvarepsilon}} }\Delta \hat{\varvec{\psi}} - \frac{{\left\| {\Delta {\varvec{\psi}} } \right\|}}{{\left( {R_{n + \alpha } } \right)^{2} }}\frac{{\partial R_{n + \alpha } }}{\partial {\varvec {\upvarepsilon}} } $$
(A69)

where the derivatives appeared in the preceding relations are produced in the following,

$$ \frac{{\partial\Delta {\varvec{\psi}} }}{\partial {\varvec {\upvarepsilon}} } = 2G(1 - \alpha ){\mathbb{I}}_{\text{dev}} - 2G\Delta {\mathbf{e}}\frac{\partial \alpha }{\partial {\varvec {\upvarepsilon}} } $$
(A70)
$$ \frac{{\partial R_{n + \alpha } }}{\partial {\varvec {\upvarepsilon}} } = - \sqrt 2 \beta K(\Delta {\upvarepsilon}_{\text{v}} \frac{\partial \alpha }{\partial {\varvec {\upvarepsilon}} } + \alpha \,{\mathbf{i}}) $$
(A71)

The rest of the derivatives in Eq. (A65) are \({{\partial\Delta \hat{{\varvec{\psi}} }} \mathord{\left/ {\vphantom {{\partial\Delta \hat{{\varvec{\psi}} }} \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) and \({{\partial X_{n + \alpha }^{\text{R}} } \mathord{\left/ {\vphantom {{\partial X_{n + \alpha }^{\text{R}} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) which can be computed via,

$$ \frac{{\partial\Delta \hat{\varvec{\psi}}}}{\partial {\varvec\upvarepsilon} } = \frac{1}{{\left\| {\Delta {\varvec{\psi}} } \right\|}}\left[ {\frac{{\partial\Delta {\varvec{\psi}} }}{\partial {\varvec\upvarepsilon} } - \frac{{\Delta {\varvec{\psi}} }}{{\left\| {\Delta {\varvec{\psi}}} \right\|}}\left( {\frac{{\partial\Delta {\varvec{\psi}}}}{\partial {\varvec\upvarepsilon} }\Delta \hat{{\varvec{\psi}} }} \right)} \right] $$
(A72)
$$ \frac{{\partial X_{n + \alpha }^{\text{R}} }}{\partial {\varvec {\upvarepsilon}} } = - \sqrt 2 \beta KX_{n + \alpha }^{0} (\Delta {\upvarepsilon}_{\text{v}} \frac{\partial \upalpha }{\partial {\varvec {\upvarepsilon}} } + \upalpha \,{\mathbf{i}}) $$
(A73)

At this stage, the derivative of \( X_{n + 1}^{0} \) with respect to strain is expressed reading,

$$ \frac{{\partial X_{n + 1}^{0} }}{\partial {\varvec {\upvarepsilon}} } = \frac{1}{{R_{n + 1} }}\frac{{\partial X_{n + 1}^{\text{R}} }}{\partial {\varvec {\upvarepsilon}} } - \frac{{X_{n + 1}^{\text{R}} }}{{\left( {R_{n + 1} } \right)^{2} }}\frac{{\partial R_{n + 1} }}{\partial {\varvec {\upvarepsilon}} } $$
(A74)

where \( {{\partial X_{n + 1}^{\text{R}} } \mathord{\left/ {\vphantom {{\partial X_{n + 1}^{\text{R}} } \partial }} \right. \kern-0pt} \partial }\varvec\upvarepsilon \) and \( {{\partial R_{n + 1} } \mathord{\left/ {\vphantom {{\partial R_{n + 1} } \partial }} \right. \kern-0pt} \partial }\varvec\upvarepsilon \) are calculated by taking their derivatives with respect to strain from Eqs. (35), (38), (45) and their related equations as follows,

$$ \frac{{\partial X_{n + 1}^{\text{R}} }}{\partial {\varvec\upvarepsilon} } = \left( {\Delta \hat{{\varvec{\psi}} }^{\text{T}} {\mathbf{X}}_{n + \alpha }^{\text{s}} } \right)\frac{\partial b}{\partial {\varvec {\upvarepsilon}} } + b\frac{{\partial\Delta \hat{{\varvec{\psi}} }}}{\partial {\varvec {\upvarepsilon}} }{\mathbf{X}}_{n + \alpha }^{\text{s}} + b\frac{{\partial {\mathbf{X}}_{n + \alpha }^{\text{s}} }}{\partial {\varvec {\upvarepsilon}} }\Delta \hat{{\varvec{\psi}} } + X_{n + \alpha }^{\text{R}} \frac{\partial a}{\partial {\varvec {\upvarepsilon}} } + a\frac{{\partial X_{n + \alpha }^{\text{R}} }}{\partial {\varvec \upvarepsilon} } $$
(A75)
$$ \frac{{\partial R_{n + 1} }}{\partial \varvec\upvarepsilon } = \sqrt 2 H_{\text{iso}} \frac{\partial \lambda }{\partial {\varvec \upvarepsilon} } - \sqrt 2 \beta \left[ {\frac{1}{{1 - 2\beta^{2} \bar{K}\lambda }}\left( {\frac{{\partial p_{n + 1}^{{{\prime }{\text{TR}}}} }}{\partial {\varvec \upvarepsilon} } - 2\beta \bar{K}\tau_{y,n} \frac{\partial \lambda }{\partial {\varvec \upvarepsilon} } - 4\beta \bar{K}H_{\text{iso}} \lambda \frac{\partial {\lambda} }{\partial {\varvec \upvarepsilon} }} \right) + \left( {\frac{{p_{n + 1}^{{{\prime }{\text{TR}}}} - 2\beta \bar{K}\tau_{y,n} \lambda - 2\beta \bar{K}H_{\text{iso}} \lambda^{2} }}{{\left( {1 - 2\beta^{2} \bar{K}\lambda } \right)^{2} }}} \right)2\beta^{2} \bar{K}\frac{\partial \lambda }{\partial {\varvec \upvarepsilon} }} \right] $$
(A76)

All the parameters in Eq. (A75) have already been presented and the derivatives of Eq. (A76) are computed as,

$$ \frac{\partial \lambda }{\partial {\varvec \upvarepsilon} } = - \frac{1}{{C_{2} }}\left( { - \frac{1}{\sqrt 2 }\frac{{\partial \left\| {{\mathbf{s}}_{n + 1}^{{{\prime TR}}} } \right\|}}{\partial {\varvec {\upvarepsilon}} } - \beta \frac{{\partial p_{n + 1}^{{{\prime TR}}} }}{\partial {\varvec {\upvarepsilon}} }} \right) + \frac{{C_{3} }}{{C_{2}^{2} }}\left( {\sqrt 2 \beta^{2} \bar{K}\frac{{\partial \left\| {{\mathbf{s}}_{n + 1}^{{{\prime TR}}} } \right\|}}{\partial \varvec \upvarepsilon } + 2\bar{G}\beta \frac{{\partial p_{n + 1}^{{{\prime TR}}} }}{\partial {\varvec\upvarepsilon} }} \right) $$
(A77)
$$ \frac{{\partial p_{n + 1}^{{{\prime TR}}} }}{\partial {\varvec {\varepsilon}} } = K\,{\mathbf{i}} $$
(A78)

Finally, \({{\partial\Delta {\mathbf{e}}^{\text{p}} } \mathord{\left/ {\vphantom {{\partial\Delta {\mathbf{e}}^{\text{p}} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) and \({{\partial \left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|} \mathord{\left/ {\vphantom {{\partial \left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|} \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\), which are required to compute the consistent tangent operator addressed in consistent tangent operator section, are obtained by the succeeding relations,

$$ \frac{{\partial\Delta {\mathbf{e}}^{\text{p}} }}{\partial {\varvec {\upvarepsilon}} } = = \frac{1}{{2\bar{G}}}\left( {\frac{{\partial {\mathbf{s}}_{n + 1}^{{{\prime TR}}} }}{\partial {\varvec {\upvarepsilon}} } - \frac{{\partial {\mathbf{s^{\prime}}}_{n + 1} }}{\partial {\varvec {\upvarepsilon}} }} \right) $$
(A79)
$$ \frac{{\partial \left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|}}{\partial {\varvec {\upvarepsilon}} } = \frac{1}{{2\bar{G}}}\left( {\frac{{\partial {\mathbf{s}}_{n + 1}^{{{\prime TR}}} }}{\partial {\varvec {\upvarepsilon}} } - \frac{{\partial {\mathbf{s^{\prime}}}_{n + 1} }}{\partial {\varvec {\upvarepsilon}} }} \right)\frac{{\Delta {\mathbf{e}}^{\text{p}} }}{{\left\| {\Delta {\mathbf{e}}^{\text{p}} } \right\|}} $$
(A80)

where \({{\partial {\mathbf{s}}_{n + 1}^{{{\prime TR}}} } \mathord{\left/ {\vphantom {{\partial {\mathbf{s}}_{n + 1}^{{{\prime TR}}} } \partial }} \right. \kern-0pt} \partial }{\varvec{\upvarepsilon}} = 2{\text G}{\mathbb{I}}_{\text{dev}}\) and \({{\partial {\mathbf{s^{\prime}}}_{n + 1}^{{}} } \mathord{\left/ {\vphantom {{\partial {\mathbf{s^{\prime}}}_{n + 1}^{{}} } \partial }} \right. \kern-0pt} \partial } {\varvec{\upvarepsilon}}\) were previously presented in Eq. (A66).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifian, M., Sharifian, M. & Sharifian, M. Nonlinear elastoplastic analysis of pressure sensitive materials. Int J Mech Mater Des 14, 329–344 (2018). https://doi.org/10.1007/s10999-017-9377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9377-2

Keywords

Navigation