Toughening mechanisms in multiphase nanocomposites



Our research is concerned with nanoreinforced structural adhesive bonds (SAB) for aerospace applications that contain dissimilar substrates and a theromoset epoxy adhesive with dispersed nanofillers. The interactions between these different phases results in unique fracture properties and mechanisms that dictate the toughness of the nanocomposite. In view of the varied length-scale, one cannot implement mere traditional approaches to evaluate the possible toughening mechanisms needed to ensure the integrity of the multiphase nanocomposite. Our current research is devoted to establishing the appropriate toughening mechanisms in multiphase nanocomposites by adopting traditional mechanisms such as crack-bridging, crack deflection, crack pinning and void nucleation, as well as investigating new nano-mechanisms such as fracture ridge creation. In this paper, the toughening mechanisms of carbon nanotube (CNT) reinforced polymer SABs are identified and their effects quantified in order to effectively estimate the fracture toughness of nanocomposite. Specific attention is devoted to examining the effect of dispersion of the nanofillers upon the strengthening mechanisms and interfacial debonding in nanocomposites, and the propensity of agglomerations-assisted crack initiation sites using atomistic based continuum modeling techniques.


Nanocomposites Carbon nanotubes Toughening Atomistic based continuum 



The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. F. Al Jahwari is supported by a scholarship from Sultan Qaboos University, Oman.


  1. Ambrose, C.T.: Adhesives with Nanoparticles. Handbook of Adhesion Technology. Springer, Berlin (2011)Google Scholar
  2. Chen, J.K., Wang, G.-T., Yu, Z.-Z., Huang, Z.P., Mai, Y.-W.: Critical particle size for interfacial debonding in polymer/nanoparticle composites. Compos. Sci. Technol. 70, 861–872 (2010)CrossRefGoogle Scholar
  3. Echeberria, J., Rodrı′guez, N., Vleugels, J., Vanmeensel, K., Reyes-Rojas, A., Garcia-Reyes, A., Domı′nguez-Rios, C., Aguilar-Elgue′zabal, A., Bocanegra-Bernal, M.H.: Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50, 706–717 (2012)CrossRefGoogle Scholar
  4. Fu, S.Y., Zhou, B.L., Chen, X., Xu, C.F., He, G.H., Lung, C.W.: Some further considerations of the theory of fibre debonding and pull-out from an elastic matrix, I: constant interfacial frictional shear stress. Composites 24(1), 13–17 (1998)CrossRefGoogle Scholar
  5. Garg, A.C., Mai, Y.-W.: Failure mechanisms in toughened epoxy resins: a review. Compos. Sci. Technol. 31, 179–223 (1988)CrossRefGoogle Scholar
  6. Hsieh, T.H., Kinloch, A.J., Masania, K., Sohn Lee, J., Taylor, A.C., Taylor, A.C., Sprenger, S.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 1193–1210 (2010)CrossRefGoogle Scholar
  7. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S.: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48, 530–541 (2007)CrossRefGoogle Scholar
  8. Kelly, A.: Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319, 95–116 (1970)CrossRefGoogle Scholar
  9. Lachman, N., Wagner, H.D.: Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Composites 41, 1093–1098 (2010)CrossRefGoogle Scholar
  10. Liu, J., Sue, H.J., Thompson, Z.J., Bates, F.S., Dettloff, M., Jacob, G.: Nano-cavitation in self- assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41, 7616–7624 (2008)CrossRefGoogle Scholar
  11. Liu, H.Y., Wang, G.-T., Mai, Y.-W., Zeng, Y.: On fracture toughness of nano-particle modified epoxy. Composites 42, 2170–2175 (2011)CrossRefGoogle Scholar
  12. Pasupuleti, S., Peddetti, R., Santhanam, S., Jen, K.-P., Wing, Z.N., Hecht, M., Halloran, J.P.: Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater. Sci. Eng. 491, 224–229 (2008)CrossRefGoogle Scholar
  13. Sumfleth, J., de Almeida Prado, L., Sriyai, M., Schulte, K.: Titania-doped multi-walled carbon nanotubes epoxy composites: enhanced dispersion and synergistic effects in multiphase nanocomposites. Polymer 49, 5105–5112 (2008)CrossRefGoogle Scholar
  14. Wagner, H.D., Laurie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–191 (1998)CrossRefGoogle Scholar
  15. Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATHCrossRefGoogle Scholar
  16. Wernik, J.M., Cornwell-Mott, B.J., Meguid, S.A.: Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int. J. Solids Struct. 49, 1852–1863 (2012)CrossRefGoogle Scholar
  17. Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., Xu, J.M.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52, 931–944 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mechanics and Aerospace Design LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations