Skip to main content
Log in

XFEM simulation of cracks, holes and inclusions in functionally graded materials

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The present work aims at the numerical simulation of inhomogeneities/discontinuities (cracks, holes and inclusions) in functionally graded materials (FGMs) using extended finite element method (XFEM). A FGM with unidirectional gradation in material properties is modeled under plane strain condition. The domain contains a major crack either at the center or at the edge of the domain along with multiple minor discontinuities/flaws such as minor cracks and/or voids/inclusions distributed all over the domain. The effect of the variation in stress intensity factor (SIF) of the major crack due to the presence of the minor cracks and voids/inclusions is studied in detail. The simulations show that the presence of minor discontinuities significantly affects the values of SIFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bordas, S., Nguyen, P., Dunant, C., Guidoum, A., Dang, H.: An extended finite element library. Int. J. Numer. Methods Eng. 71, 703–732 (2007)

    Article  MATH  Google Scholar 

  • Carpinteri, A., Paggi, M., Pugno, N.: An analytical approach for fracture and fatigue in functionally graded materials. Int. J. Fract. 141, 535–547 (2006)

    Article  MATH  Google Scholar 

  • Chen, S.C., Wang, T.C.: Finite element solutions for plane strain mode-I crack with strain gradient effects. Int. J. Solids Struct. 39, 1241–1257 (2002)

    Article  MATH  Google Scholar 

  • Cheng, Z., Zhong, Z.: Analysis of a moving crack in a functionally graded strip between two homogeneous layers. Int. J. Mech. Sci. 49, 1038–1046 (2007)

    Article  Google Scholar 

  • Cheng, Z., Gao, D., Zhong, Z.: Crack propagating in functionally graded coating with arbitrarily distributed material properties bonded to a homogeneous substrate. Acta Mech. Solida Sin. 23, 437–446 (2011)

    Google Scholar 

  • Chudnovsky, A., Kachanov, M.: Interaction of a crack with a field of micro cracks. Appl. Eng. Sci. 21, 1009–1018 (1983)

    MATH  Google Scholar 

  • Comi, C., Mariani, S.: Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Comput. Methods Appl. Mech. Eng. 196, 4013–4026 (2007)

    Article  MATH  Google Scholar 

  • Dag, S., Yildirim, B., Sarikaya, D.: Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads. Int. J. Solids Struct. 44, 7816–7840 (2007)

    Article  MATH  Google Scholar 

  • Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Struct. 39, 2557–2574 (2002)

    Article  MATH  Google Scholar 

  • Gong, S.X., Horii, H.: General solution to the problem of micro cracks near the tip of a main crack. J. Mech. Phys. Solids 37, 27–46 (1989)

    Article  MATH  Google Scholar 

  • Gong, S.X., Meguid, S.A.: A general solution to the antiplane problem of an arbitrarily located elliptical hole near the tip of a main crack. Int. J. Solids Struct. 28, 249–263 (1991)

    Article  MATH  Google Scholar 

  • Guo, L.-C., Noda, N.: Modeling method for a crack problem of functionally graded materials with arbitrary properties-piecewise exponential model. Int. J. Solids Struct. 44, 6768–6790 (2007)

    Google Scholar 

  • Huang, G.Y., Wang, Y.S., Dietmar, G.: Fracture analysis of functionally graded coatings: plane deformation. Eur. J. Mech. A Solids 22, 535–544 (2003)

    Article  MATH  Google Scholar 

  • Lee, S., Song, J., Yoon, Y., Zi, G., Belytschko, T.: Combined extended and superimposed finite element method for cracks. Int. J. Numer. Methods Eng. 59, 1119–1136 (2009)

    Article  Google Scholar 

  • Ma, J., Zhong, Z., Zhang, C.: Analysis of a crack in a functionally graded strip with a power form shear modulus. Acta Mech. Solida Sin. 22(5), (2009)

  • Meguid, S.A., Gaultier, P.E., Gong, S.X.: A comparison between analytical and finite element analysis of main crack-micro crack interaction. Eng. Fract. Mech. 38, 451–465 (1991)

    Article  Google Scholar 

  • Meguid, S.A., Gong, S.X.: Stress concentration around interacting circular holes: a comparison between theory and experiments. Eng. Fract. Mech. 44, 247–256 (1993)

    Article  Google Scholar 

  • Meguid, S.A., Wang, X.D.: The dynamic interaction of a micro crack with a main crack under antiplane loading. Int. J. Solids Struct. 31, 1085–1097 (1994)

    Article  MATH  Google Scholar 

  • Meguid, S.A., Zhu, Z.-H.: A novel finite element for treating inhomogeneous solids. Int. J. Numer. Methods Eng. 38, 1579–1592 (1995a)

    Article  MATH  Google Scholar 

  • Meguid, S.A., Zhu, Z.-H.: Stress distribution in dissimilar materials containing inhomogeneities near the interface using novel finite element. Finite Elem. Anal. Des. 20, 283–298 (1995b)

    Article  MATH  Google Scholar 

  • Meguid, S.A.: Main crack-micro crack interaction of hydrogenated and outgassed austenitic steels. Int. J. Hydrogen Energy 22, 377–381 (1997)

    Article  Google Scholar 

  • Meguid, S.A., Wang, X.D.: On the dynamic behavior of interacting micro defects in advanced composite materials. Int. J. Impact Eng. 19(5–6), 503–514 (1997)

    Article  Google Scholar 

  • Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  • Mohammadi, S.: Extended Finite Element Method for Fracture Analysis of Structures, 1st edn. Blackwell Publishing Limited, Oxford (2008)

    Book  MATH  Google Scholar 

  • Mori, T., Saito, K., Mura, T.: An inclusion model for crack arrest in a composite reinforced by sliding fibers. Mech. Mater. 7, 49–58 (1988)

    Article  Google Scholar 

  • Mori, K., Tabarrok, B., Tong, X.: A new method for analysis of arbitrarily shaped cracks by the body force method. Int. J. Mech. Sci. 36, 881–895 (1994)

    Article  MATH  Google Scholar 

  • Nelli Silva, E.C., Paulino, G.H.: Topology optimization applied to the design of functionally graded materials (FGM) structures. In: XXI ICTAM, Warsaw, Poland, 15–21 Aug 2004

  • Prabhakar, R.M., Tippur, H.V.: Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids Struct. 37, 5353–5370 (2000)

    Article  MATH  Google Scholar 

  • Rao, B.N., Rahman, S.: An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Comput. Mech. 32, 40–51 (2003)

    Article  MATH  Google Scholar 

  • Rao, B.N., Rahman, S.: A continuum shape sensitivity method for fracture analysis of orthotropic functionally graded materials. Mech. Mater. 37, 1007–1025 (2005)

    Article  Google Scholar 

  • Rao, B.N., Rahman, S.: A continuum shape sensitivity method for fracture analysis of isotropic functionally graded materials. Comput. Mech. 38, 133–150 (2006)

    Article  MATH  Google Scholar 

  • Sukumar, N., Chopp, D., Moes, N., Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Eng. 190, 6183–6200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X.D., Meguid, S.A.: Dynamic interaction between a matrix crack and a circular inhomogenity with a distinct interphase. Int. J. Solids Struct. 36, 517–531 (1999)

    Article  MATH  Google Scholar 

  • Wang, B.-L., Mai, Y.-W.: Multiple surface cracks in a piezoelectric layer bonded to an elastic substrate under transient electromechanical loads. Mech. Mater. 39, 564–579 (2007)

    Article  Google Scholar 

  • Wang, S., Dempsey, J.P.: A cohesive edge crack. Eng. Fract. Mech. 78, 1353–1373 (2011)

    Article  Google Scholar 

  • Zhang, Ch., Sladek, J., Sladek, V.: Crack analysis in unidirectionally and bidirectionally functionally graded materials. Int. J. Fract. 129, 385–406 (2004)

    Article  MATH  Google Scholar 

  • Zhang, Ch., Sladek, J., Sladek, V.: Antiplane crack analysis of a functionally graded material by a BIEM. Comput. Mater. Sci. 32, 611–619 (2005)

    Article  Google Scholar 

  • Zhang, L., Kim, J.-H.: A complex variable approach for asymptotic mode-III crack-tip fields in an anisotropic functionally graded material. Eng. Fract. Mech. 76, 2512–2525 (2009)

    Article  Google Scholar 

  • Zhu, Z.-H., Meguid, S.A.: On the thermoelastic stress of multiple interacting inhomogeneities. Int. J. Solids Struct. 37, 2313–2330 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I.V., Mishra, B.K. & Bhattacharya, S. XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int J Mech Mater Des 7, 199–218 (2011). https://doi.org/10.1007/s10999-011-9159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9159-1

Keywords

Navigation