Skip to main content
Log in

Dynamic analysis of a functionally graded thick truncated cone with finite length

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this article dynamic analysis of a functionally graded thick truncated cone with finite length under axisymmetric internal impact loading is studied. The cone is made of a combined ceramic–metal material and the material composition varying continuously along its thickness according to the power law distribution. Finite Element Method based on Rayleigh–Ritz energy formulation and Newmark direct integration methods are applied to find the responses in time and space domain. The time histories of displacements, stresses, wave propagation in two directions and natural frequencies for various values of volume fraction exponent and semi-vertex angle of the cone for a cone with clamped end conditions have been studied. The results obtained in the present paper are compared with the result of an infinite FG thick hollow cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aksoy, H.G., Senocak, E.: Wave propagation in functionally graded and layered materials. Finite Elem. Anal. Des. 45, 876–891 (2009)

    Article  MathSciNet  Google Scholar 

  • Asemi, K., Akhlaghi, M., Salehi, M., Hosseini Zad, S.K.: Analysis of functionally graded thick truncated cone with finite length under hydrostatic internal pressure. Arch. Appl. Mech. (2010). doi:10.1007/s00419-010-0472-1

  • Asemi, K., Salehi, M., Akhlaghi, M.: Elastic solution of a two-dimensional functionally graded thick truncated cone with finite length under hydrostatic combined loads. Acta Mech. (2010). doi:10.1007/s00707-010-0380-z

  • Asgari, M., Akhlaghi, M., Hosseini, S.M.: Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading. Acta Mech. 208, 163–180 (2009)

    Article  MATH  Google Scholar 

  • Babaoglu, C., Erby, S.: Two-dimensional wave propagation in a generalized elastic solid. Chaos Solitons Fractals 12, 381–389 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Banks Sills, L., Eliasi, R., Berlin, Y.: Modeling of functionally graded materials in dynamic analyses. Compos. B 33, 7–15 (2002)

    Article  Google Scholar 

  • Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A 22, 257–265 (2001)

    Article  MathSciNet  Google Scholar 

  • Bruck, H.A.: A one-dimensional model for designing functionally graded materials to manage stress waves. Int. J. Solids Struct. 37, 6383–6395 (2000)

    Article  MATH  Google Scholar 

  • Buchanan, G.R., Wong, F.T.-I.: Frequencies and mode shapes for thick truncated hollow cones. Int. J. Mech. Sci. 43, 2815–2832 (2001)

    Article  MATH  Google Scholar 

  • Chiu, T.C., Erdogan, F.: One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vib. 222, 453–487 (1999)

    Article  Google Scholar 

  • Elmaimouni, L., Lefebvre, J.E., Zhang, V., Gryba, T.: Guided waves in radially graded cylinders: a polynomial approach. NDT&E Int. 38, 344–353 (2005)

    Article  Google Scholar 

  • El-Raheb, M.: Transient waves in an inhomogeneous hollow infinite cylinder. Int. J. Solids Struct. 42, 5356–5376 (2005)

    Article  MATH  Google Scholar 

  • Eslami, M.R.: A First Course in Finite Element Analysis, 1st edn. Amirkabir University of Technology Press, Tehran (2003). ISBN: 964-463102-1

  • Han, X., Xut, D., Liu, G.R.: Transient response in a functionally graded cylindrical shell to a point load. J. Sound Vib. 251(5), 783–805 (2002)

    Article  Google Scholar 

  • Honarvar, F., Enjilela, E., Sinclair, A.N., Mirnezami, S.A.: Wave propagation in transversely isotropic cylinders. Int. J. Solids Struct. 44, 5236–5246 (2007)

    Article  MATH  Google Scholar 

  • Hosseini, M., Akhlaghi, M., Shakeri, M.: Dynamic response and radial wave propagations of functionally graded thick hollow cylinder. Eng. Comput. 24, 288–303 (2007)

    Article  MATH  Google Scholar 

  • Hosseini, S.M., Abolbashari, M.H.: General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading. Acta Mech. 212, 1–19 (2010)

    Article  MATH  Google Scholar 

  • Koizumi, M.: The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, vol. 34. American Ceramic Society, Westerville, pp. 3–10 (1993)

  • Li, Y., Ramesh, K.T., Chin, E.S.C.: Dynamic characterization of layered and graded structures under impulsive loading. Int. J. Solids Struct. 38, 6045–6061 (2001)

    Article  MATH  Google Scholar 

  • Liu, G.R., Han, X., Lam, K.Y.: Stress waves in functionally gradient materials and its use for material characterization. Compos. B 30, 383–394 (1999)

    Article  Google Scholar 

  • Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318, 884–902 (2008)

    Article  Google Scholar 

  • Santare, M.H., Thamburaj, P., Gazonas, A.: The use of graded finite elements in the study of elastic wave propagation in continuously non-homogeneous materials. Int. J. Solids Struct. 40, 5621–5634 (2003)

    Article  MATH  Google Scholar 

  • Shakeri, M., Akhlaghi, M., Hoseini, S.M.: Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos. Struct. 76, 174–181 (2006)

    Article  Google Scholar 

  • Shariyat, M.: A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads. Int. J. Press. Vessels Piping. 86, 280–289 (2009)

    Article  Google Scholar 

  • Shariyat, M., Khaghani, M., Lavasani, S.M.H.: Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties. Eur. J. Mech. A 29, 378–391 (2010a)

    Article  Google Scholar 

  • Shariyat, M., Lavasani, S.M.H., Khaghani, M.: Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method. Appl. Math. Model. 34, 898–918 (2010b)

    Article  MATH  MathSciNet  Google Scholar 

  • Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: In: Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)

  • Zhang, G.M., Batra, R.C.: Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method. J. Comput. Phys. 222, 374–390 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Z., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solids Struct. 44, 3601–3626 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Salehi.

Appendix 1

Appendix 1

For the simplex linear triangular element the following formulation is used.

$$ N_{i} = {\frac{{a_{i} + b_{i} r + c_{i} z}}{2A}} $$
(26)
$$ N_{j} = {\frac{{a_{j} + b_{j} r + c_{j} z}}{2A}} $$
(27)
$$ N_{k} = {\frac{{a_{k} + b_{k} r + c_{k} z}}{2A}} $$
(28)
$$ a_{i} = r_{j} z_{k} - r_{k} z_{j} $$
(29)
$$ b_{i} = z_{j} - z_{k} $$
(30)
$$ c_{i} = r_{k} - r_{j} $$
(31)
$$ a_{j} = r_{k} z_{i} - r_{i} z_{k} $$
(32)
$$ b_{j} = z_{k} - z_{i} $$
(33)
$$ c_{j} = r_{i} - r_{k} $$
(34)
$$ a_{k} = r_{i} z_{j} - r_{j} z_{i} $$
(35)
$$ b_{k} = z_{i} - z_{j} $$
(36)
$$ c_{k} = r_{j} - r_{i} $$
(37)
$$A=\frac{1}{2}\det \left[ \begin{array}{lll} 1 & 1 & 1\\ {r_{i} }& {r_{j} } & {r_{k}} \\ {z_{i} } & {z_{j}} & {z_{k}} \end{array}\right] $$
(38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asemi, K., Salehi, M. & Akhlaghi, M. Dynamic analysis of a functionally graded thick truncated cone with finite length. Int J Mech Mater Des 6, 367–378 (2010). https://doi.org/10.1007/s10999-010-9144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-010-9144-0

Keywords

Navigation