Dynamic analysis of a functionally graded thick truncated cone with finite length

  • Kamran Asemi
  • Manouchehr Salehi
  • Mehdi Akhlaghi


In this article dynamic analysis of a functionally graded thick truncated cone with finite length under axisymmetric internal impact loading is studied. The cone is made of a combined ceramic–metal material and the material composition varying continuously along its thickness according to the power law distribution. Finite Element Method based on Rayleigh–Ritz energy formulation and Newmark direct integration methods are applied to find the responses in time and space domain. The time histories of displacements, stresses, wave propagation in two directions and natural frequencies for various values of volume fraction exponent and semi-vertex angle of the cone for a cone with clamped end conditions have been studied. The results obtained in the present paper are compared with the result of an infinite FG thick hollow cylinder.


Thick truncated cone FGM Finite element method Elasticity Dynamical analysis 


  1. Aksoy, H.G., Senocak, E.: Wave propagation in functionally graded and layered materials. Finite Elem. Anal. Des. 45, 876–891 (2009)CrossRefMathSciNetGoogle Scholar
  2. Asemi, K., Akhlaghi, M., Salehi, M., Hosseini Zad, S.K.: Analysis of functionally graded thick truncated cone with finite length under hydrostatic internal pressure. Arch. Appl. Mech. (2010). doi: 10.1007/s00419-010-0472-1
  3. Asemi, K., Salehi, M., Akhlaghi, M.: Elastic solution of a two-dimensional functionally graded thick truncated cone with finite length under hydrostatic combined loads. Acta Mech. (2010). doi: 10.1007/s00707-010-0380-z
  4. Asgari, M., Akhlaghi, M., Hosseini, S.M.: Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading. Acta Mech. 208, 163–180 (2009)MATHCrossRefGoogle Scholar
  5. Babaoglu, C., Erby, S.: Two-dimensional wave propagation in a generalized elastic solid. Chaos Solitons Fractals 12, 381–389 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. Banks Sills, L., Eliasi, R., Berlin, Y.: Modeling of functionally graded materials in dynamic analyses. Compos. B 33, 7–15 (2002)CrossRefGoogle Scholar
  7. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A 22, 257–265 (2001)CrossRefMathSciNetGoogle Scholar
  8. Bruck, H.A.: A one-dimensional model for designing functionally graded materials to manage stress waves. Int. J. Solids Struct. 37, 6383–6395 (2000)MATHCrossRefGoogle Scholar
  9. Buchanan, G.R., Wong, F.T.-I.: Frequencies and mode shapes for thick truncated hollow cones. Int. J. Mech. Sci. 43, 2815–2832 (2001)MATHCrossRefGoogle Scholar
  10. Chiu, T.C., Erdogan, F.: One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vib. 222, 453–487 (1999)CrossRefGoogle Scholar
  11. Elmaimouni, L., Lefebvre, J.E., Zhang, V., Gryba, T.: Guided waves in radially graded cylinders: a polynomial approach. NDT&E Int. 38, 344–353 (2005)CrossRefGoogle Scholar
  12. El-Raheb, M.: Transient waves in an inhomogeneous hollow infinite cylinder. Int. J. Solids Struct. 42, 5356–5376 (2005)MATHCrossRefGoogle Scholar
  13. Eslami, M.R.: A First Course in Finite Element Analysis, 1st edn. Amirkabir University of Technology Press, Tehran (2003). ISBN: 964-463102-1Google Scholar
  14. Han, X., Xut, D., Liu, G.R.: Transient response in a functionally graded cylindrical shell to a point load. J. Sound Vib. 251(5), 783–805 (2002)CrossRefGoogle Scholar
  15. Honarvar, F., Enjilela, E., Sinclair, A.N., Mirnezami, S.A.: Wave propagation in transversely isotropic cylinders. Int. J. Solids Struct. 44, 5236–5246 (2007)MATHCrossRefGoogle Scholar
  16. Hosseini, M., Akhlaghi, M., Shakeri, M.: Dynamic response and radial wave propagations of functionally graded thick hollow cylinder. Eng. Comput. 24, 288–303 (2007)MATHCrossRefGoogle Scholar
  17. Hosseini, S.M., Abolbashari, M.H.: General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading. Acta Mech. 212, 1–19 (2010)MATHCrossRefGoogle Scholar
  18. Koizumi, M.: The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, vol. 34. American Ceramic Society, Westerville, pp. 3–10 (1993)Google Scholar
  19. Li, Y., Ramesh, K.T., Chin, E.S.C.: Dynamic characterization of layered and graded structures under impulsive loading. Int. J. Solids Struct. 38, 6045–6061 (2001)MATHCrossRefGoogle Scholar
  20. Liu, G.R., Han, X., Lam, K.Y.: Stress waves in functionally gradient materials and its use for material characterization. Compos. B 30, 383–394 (1999)CrossRefGoogle Scholar
  21. Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318, 884–902 (2008)CrossRefGoogle Scholar
  22. Santare, M.H., Thamburaj, P., Gazonas, A.: The use of graded finite elements in the study of elastic wave propagation in continuously non-homogeneous materials. Int. J. Solids Struct. 40, 5621–5634 (2003)MATHCrossRefGoogle Scholar
  23. Shakeri, M., Akhlaghi, M., Hoseini, S.M.: Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos. Struct. 76, 174–181 (2006)CrossRefGoogle Scholar
  24. Shariyat, M.: A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads. Int. J. Press. Vessels Piping. 86, 280–289 (2009)CrossRefGoogle Scholar
  25. Shariyat, M., Khaghani, M., Lavasani, S.M.H.: Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties. Eur. J. Mech. A 29, 378–391 (2010a)CrossRefGoogle Scholar
  26. Shariyat, M., Lavasani, S.M.H., Khaghani, M.: Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method. Appl. Math. Model. 34, 898–918 (2010b)MATHCrossRefMathSciNetGoogle Scholar
  27. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: In: Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)Google Scholar
  28. Zhang, G.M., Batra, R.C.: Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method. J. Comput. Phys. 222, 374–390 (2007)MATHCrossRefMathSciNetGoogle Scholar
  29. Zhang, Z., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solids Struct. 44, 3601–3626 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2011

Authors and Affiliations

  • Kamran Asemi
    • 1
  • Manouchehr Salehi
    • 2
  • Mehdi Akhlaghi
    • 1
  1. 1.Mechanical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Mechanical Engineering Department and Concrete Technology and Durability Research CentreAmirkabir University of TechnologyTehranIran

Personalised recommendations