Advertisement

Active structural-acoustic control of laminated composite plates using vertically/obliquely reinforced 1–3 piezoelectric composite patch

  • M. C. Ray
  • A. Faye
Article

Abstract

This article deals with the active structural-acoustic control of thin laminated composite plates using vertically reinforced 1–3 piezoelectric fiber-reinforced composite (PFRC) material for constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with ACLD patches and coupled with acoustic cavity to describe the coupled structural-acoustic behavior of the plates enclosing the cavity. Both in-plane and out of plane actuation of the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. The performance of PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity.

Keywords

Piezoelectric composite Active structural-acoustic control Smart damping Smart structures 

References

  1. Arafa, M., Baz, A.: Dynamics of active piezoelectric damping composites. Composites B. 31, 225–264 (2000). doi: 10.1016/S1359-8368(00)00020-2 CrossRefGoogle Scholar
  2. Baily, T., Hubbard, J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985). doi: 10.2514/3.20029 CrossRefGoogle Scholar
  3. Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126(2), 327–343 (1988). doi: 10.1016/0022-460X(88)90245-3 CrossRefGoogle Scholar
  4. Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. ASME. J. Vib. Acoust. 117B, 135–144 (1995). doi: 10.1115/1.2838655 CrossRefGoogle Scholar
  5. Chantalakhana, C., Stanway, R.: Active constrained layer damping of clamped–clamped plate vibrations. J. Sound Vib. 241(5), 755–777 (2001). doi: 10.1006/jsvi.2000.3317 CrossRefGoogle Scholar
  6. Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA. J. 25(10), 1373–1385 (1987). doi: 10.2514/3.9792 CrossRefGoogle Scholar
  7. Dong, S., Tong, L.: Vibration control of plates using discretely distributed piezoelectric quasi-modal actuators/sensors. AIAA. J. 39, 1766–1772 (2001)CrossRefGoogle Scholar
  8. Gu, Y., Clark, R.L., Fuller, C.R., Zander, A.C.: Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidyne fluoride (PVDF) modal sensors. ASME. J. Vib. Acoust. 116, 303–308 (1994). doi: 10.1115/1.2930429 CrossRefGoogle Scholar
  9. Hamden, A.M., Nayfeh, A.H.: Measure of modal controllability and observability for first and second order linear systems. J. Guid. Control Dyn. 12, 421–428 (1989). doi: 10.2514/3.20424 CrossRefGoogle Scholar
  10. Kinsler, L.E., Frey, A.R.: Fundamentals of Acoustics, 2nd edn. Willey, New York (1962)MATHGoogle Scholar
  11. Park, C.H., Baz, A.: Vibration control of bending modes of plates using active constrained layer damping. J. Sound Vib. 227(4), 711–734 (1999). doi: 10.1006/jsvi.1999.2391 CrossRefGoogle Scholar
  12. Piezocomposites, Materials System Inc., 543 Great Road, Littleton, MA 01460Google Scholar
  13. Ray, M.C., Balaji, R.: Active structural-acoustic control of laminated cylindrical panel using smart damping treatment. Int. J. Mech. Sci. 49, 1001–1017 (2007). doi: 10.1016/j.ijmecsci.2007.02.001 CrossRefGoogle Scholar
  14. Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plates. J. Sound Vib. 208, 391–406 (1997). doi: 10.1006/jsvi.1997.1171 CrossRefGoogle Scholar
  15. Ray, M.C., Mallik, N.: Active control of laminated composite plates using piezoelectric fiber reinforced composite layer. Smart Mater. Struct. 13(1), 146–152 (2004a). doi: 10.1088/0964-1726/13/1/016 CrossRefGoogle Scholar
  16. Ray, M.C., Mallik, N.: Finite element analysis of smart structures constraining piezoelectric fiber reinforced composite actuator. AIAA. J. 42(7), 1398–1405 (2004b). doi: 10.2514/1.4030 CrossRefGoogle Scholar
  17. Ray, M.C., Mallik, N.: Performance of smart damping treatment using piezoelectric fiber reinforced composites. AIAA. J. 43(1), 184–193 (2005). doi: 10.2514/1.7552 CrossRefGoogle Scholar
  18. Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15, 631–641 (2006). doi: 10.1088/0964-1726/15/2/047 CrossRefGoogle Scholar
  19. Ray, M.C., Pradhan, A.K.: On the use of vertically reinforced 1–3 piezoelectric composites for hybrid damping of laminated composite plates. Mech. Adv. Mater. Struct. 14, 245–261 (2007). doi: 10.1080/15376490600795683 CrossRefGoogle Scholar
  20. Ray, M.C., Reddy, J.N.: Performance of piezoelectric fiber-reinforced composites for active structural-acoustic control of laminated composite plates. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 51(11), 1477–1490 (2004). doi: 10.1109/TUFFC.2004.1367489 CrossRefGoogle Scholar
  21. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, 2nd edn. CRC press, Boca Raton, FL (2004)Google Scholar
  22. Ro, J., Baz, A.: Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping. Smart Mater. Struct. 8, 292–300 (1999). doi: 10.1088/0964-1726/8/3/302 CrossRefGoogle Scholar
  23. Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8, 861–876 (2002)MATHCrossRefGoogle Scholar
  24. Shields, W., Ro, J., Baz, A.: Control of sound radiation from a plate into an acoustic cavity using active piezoelectric-damping composites. Smart Mater. Struct. 7, 1–11 (1998). doi: 10.1088/0964-1726/7/1/002 CrossRefGoogle Scholar
  25. Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 40, 40–47 (1991). doi: 10.1109/58.67833 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations