Characterization of strengthened rapidly quenched Zr-based alloys

  • Medhat Awad El-Hadek
  • Magdy Kassem


The nominal composition components of alloy Zr66.4Nb6.4Ni8.7Cu10.5Al8 (Alloy A) were fabricated and characterized. The strengthening of in-situ alloys depends on the role of both the glassy matrix and the second phases. The glass transition and the crystallization kinetics were studied using DSC and X-ray diffraction as a function of element distribution. The amorphous and semi-crystalline structures were identified with the existence of nano crystals in the alloy nominal compositions. The Elastic compression modulus were found to increase with transition to crystallite phase. Where as, the microhardness decreases dramatically with the change from crystalline to amorphous phase. The compression fracture surface shows classic veins behavior. In mode of continuous heating and adiabatic annealing the glass transition, T g , and the crystalline peak, T p , temperatures display a strong dependency on heating rate. The activation energy for glass transition and crystallization were determined as E g  = 226 KJ/mol based on Kissinger method, but during the isothermal process E g  = 121 KJ/mol.


Bulk metallic glasses Fracture mode Thermal stability 



The authors thank M. Frey, H. Grahl, M. Gründlich, C. Mickel and Sven for sample preparation, H.-J. Klauß for assistance with the mechanical tests, and A. Güth for stimulating discussions. Also, the DAAD Foundation and the IFW Dresden for providing financial support.


  1. Bain, Z., Chen, G.L., He, G., Hui, X.D.: Microstructure and ductile–brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng. A316, 135–144 (2001).Google Scholar
  2. Bansal, N., Doremus, R., Bruce, A., Moynihan, C.T.: Kinetics of crystallization of ZrF4-Ba2-LaF3 glass by differential scanning calorimetry. J. Am. Ceram. Soc. 66(4), 233–238 (1983).CrossRefGoogle Scholar
  3. Bengus, V., Tabachnikova, E., Miskuf, J., Csach, K., Ocelik, V., Johnson, W., Molokanov, V.: New features of the low temperature ductile shear failure observed in bulk amorphous alloys. J. Mater. Sci. 35, 4449–4457 (2000).CrossRefGoogle Scholar
  4. Chen, H., He, Y., Shiflet, G.J., Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. (London) Nature 367, 541–543 (1994).CrossRefGoogle Scholar
  5. Clavaguera-Mora, M.T., Baró, M.D., Suriñach, S., Clavaguera, N.: Crystallization behavior of some melt spun Nd–Fe–B alloys. J. Mater. Res. 5, 1201–1206 (1990).CrossRefGoogle Scholar
  6. Concustell, A., Alcalá, G., Mato, S., Woodcock, T.G., Gebert, A., Eckert, J., Baró, M.D.: Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass. Intermetallics 13(11), 1214–1219 (2005).CrossRefGoogle Scholar
  7. Csontos, A., Shiflet, G.: Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses. Nanostruct. Mater. 9(1–8), 281–289 (1997).CrossRefGoogle Scholar
  8. Deschamps, A., Niewczas, M., Ble, F., Brechet, Y., Embury, J., Sinq, L., Livet, F., Simon, J.: Low-temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening. Philos. Mag. 79(10), 2485–2504 (1999).CrossRefGoogle Scholar
  9. Gao, M., Hackenberg, R., Shiflet, G.: Deformation-induced nanocrystal precipitation in Al-base metallic glasses. Mater. Trans. JIM 42(8), 1741–1747 (2001).CrossRefGoogle Scholar
  10. Greer, A.L.: Metallic glasses. Curr. Opin. Solid State Mater. Sci. 2(4), 412–416 (1997).CrossRefGoogle Scholar
  11. Greer, A.L.: Partially or fully devitrified alloys for mechanical properties. Mater. Sci. Eng. A 304–306, 68–72 (2001).Google Scholar
  12. Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901–2904 (2000).CrossRefGoogle Scholar
  13. Henderson, D.W.: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301 (1979).CrossRefGoogle Scholar
  14. Hufnagel, T.C., El-Deiry, P., Vince, R.P.: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scripta Mater. 43(12), 1071–1075 (2000).CrossRefGoogle Scholar
  15. Inoue A.: Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Trans. Tech. Publications Ltd, Switzerland (1998).Google Scholar
  16. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000).CrossRefGoogle Scholar
  17. Inoue, A., Zhang, T., Wei, M., Sakurait, T.: Mechanical properties of bulk amorphous Zr-Al-Cu-Ni-Ag alloys containing nanoscale quasicrystalline particles. Mater. Trans. JIM (Jpn Inst Met) 40(12), 1382–1389 (1999).Google Scholar
  18. Inue, A., Zhang, T., Masumoto, T.: Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31(3), 177–183 (1990).Google Scholar
  19. Jiang, W., Atzmon, M.: Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Fourth International Conference on Bulk Metallic Glasses. Intermetallics 14(8–9), 962–965 (2006).Google Scholar
  20. Kim, J.J., Choi, Y., Suresh, S., Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science. 295(5555), 654–657 (2002).Google Scholar
  21. Kim, T., Lee, J., Kim, H., Bae, J.: Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders. Mater. Sci. Eng. A 402, 228–233 (2005).CrossRefGoogle Scholar
  22. Kimura, H., Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31(2), 231–240 (1983).CrossRefGoogle Scholar
  23. Klement, W., Willens, R.H., Duwez, P.: Noncrystalline structure in solidified gold–silicon alloys. (London) Nature 187, 869 (1960).Google Scholar
  24. Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10(5), 805–817 (1998).CrossRefGoogle Scholar
  25. Lin, X.H., Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
  26. Pecker, A., Johanson, W.L.: A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, (1993).Google Scholar
  27. Saiter, J.M., Ledru, J., Hamou, A., Saffarini, G.: Crystallization of AsxSe1−x from the glassy state (0.005 < < 0.03). Phys. B Condens. Matter 245(3), 256–262 (1998).CrossRefGoogle Scholar
  28. Sestak, J.: Applicability of DTA to the study of crystallization kinetics of glasses. Phys. Chem. Glass. 15(6), 137–140 (1974).Google Scholar
  29. Shaz, M.A., Mukhopadhyay, N.K., Mandal, R.K., Srivastava, O.N.: Synthesis and microhardness measurement of Ti–Zr–Ni nanoquasicrystalline phase. J. Alloys Comp. 342(1–2), 49–52 (2002).CrossRefGoogle Scholar
  30. Shelby, J.: Handbook of Gas Diffusion in Solids and Melts. ASM International, Member/Customer Service Center, Materials Park, USA (1996).Google Scholar
  31. Zhang, Z.F., Eckert, J., Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51(4), 1167–1179 (2003).CrossRefGoogle Scholar
  32. Zhang, T., Inoue, A., Masumoto, T.: Amorphous Zr–Al–TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans. JIM 32(11), 1005–1010 (1991).Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  1. 1.Department of Production and Mechanical Design, Faculty of Engineering at Port-SaidSuez Canal UniversityPort-FouadEgypt
  2. 2.Department of Metrology, Petroleum & Mining EngineeringSuez Canal UniversitySuezEgypt

Personalised recommendations