The Determination of Stress Distribution and Elastic Properties for Heterogeneous Materials with Hybrid Finite Element



This paper describes a numerical method for evaluating the micro and macromechanical response of two-dimensional heterogeneous materials with both periodic and random distribution of the second phase. The proposed method uses two different numerical programs, based on the Voronoi Cell Finite Element Method, developed by the authors. Various numerical examples are executed for validating the effectiveness of the proposed method in evaluating the overall elastic constants of heterogeneous materials, and different comparison with analytical models and experimental results are shown. In order to validate the accuracy of the programs for predicting the stress micro-fields around the inclusion, some comparisons with a FEM commercial numerical code are performed.


elastic properties heterogeneous materials hybrid elements Voronoi cell finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benssousan, A., Lions, J.L. and Papanicoulau, G. (1978). Asymptotic analysis for periodic structure, in Studies in Mathematics and Its Applications, Vol. 5. North-Holland Publishing, Amsterdam.Google Scholar
  2. Bertini, L., Montanari, V., Straffelini, G. 1998Tensile and bending behaviour of sintered alloys: experimental results and modelingASME Journal of Engineering Materials and Technology120248255Google Scholar
  3. Budiansky, B. 1965On the elastic moduli of some heterogeneous materialsJournal of the Mechanics and Physics of Solids14223227Google Scholar
  4. Cesari, F., Furgiuele, F.M. and Maletta, C. (2003). L’elemento finito ibrido applicato a materiali contenenti vuoti o inclusioni rigide. Proceedings of the XXXII AIAS Conference, Salerno, Italy.Google Scholar
  5. Cesari, F., Furgiuele, F.M. and Martini, D. (2001a). Analisi di Strutture Piane in Materiale Eterogeneo con l’Elemento Finito Ibrido. Proceedings of the XXX AIAS Conference, Alghero, Italy, pp. 1093–1101.Google Scholar
  6. Cesari, F., Furgiuele, F.M. and Martini, D. (2001b). An automatic mesh generator for random composites. Proceedings of the 12th international conference on design tools and methods in industrial design, Rimini, Italy.Google Scholar
  7. Chen, H.S., Acrivos, A. 1978The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrationsInternational Journal Solids Structures14315330Google Scholar
  8. Christensen, R.M., Lo, K.H. 1979Solutions for effective shear properties in three phase sphere and cilinder modelsJournal of the Mechanics and Physics of Solids27315330CrossRefGoogle Scholar
  9. Eshelby, J.D. (1958). The determination of the elastic field of an ellipsoidal inclusions and related problems. Proceeding of the Royal Society, Vol. 241A, London, pp. 376–396.Google Scholar
  10. Fotiu, A., Nemat-Nasser, S. 1995Overall properties of elastic-viscoplastic periodic compositesInternational Journal of Plasticity12163190Google Scholar
  11. Ghosh, S., Mukhopadhyay, S.N. 1991A two-dimensional automatic mesh generator for finite element analysis for random compositesComputers Structure41245256Google Scholar
  12. Ghosh, S., Mukhopadhyay, S.N. 1993A material based finite element analysis of heterogeneous media involving dirichlet tassellationsComputer Methods in Applied Mechanics and Engineering104211247CrossRefGoogle Scholar
  13. Halpin, J. and Tsai, S.W. (1969). Effects of environmental factors on composite materials. Air Force Materials Lab-Technical Report.Google Scholar
  14. Hashin, Z., Strikman, S. 1963A variational approach to the theory of the elastic behaviour of multiphase materialsJournal of the Mechanics and Physics of Solids11127140CrossRefGoogle Scholar
  15. Hill, R. 1965A self consistent mechanics of composite materialsJournal of the Mechanics and Physics of Solids13213222Google Scholar
  16. Hori, M., Nemat-Nasser, S. 1993Double inclusion model and overall moduli of multiphase compositesMechanics of Materials14189206CrossRefGoogle Scholar
  17. Luciano, R, Barbero, E.J. 1994Formulas for stiffness of composites with periodic microstructureInternational Journal Solids Structures3129332944Google Scholar
  18. Lynch, C.T. 1975CRC Handbook of Material ScienceCRC PressClevelandGoogle Scholar
  19. Muskhelishvili, N.I. 1953Some Basic Problems of the Mathematical Theory of ElasticityNoordhoffGroningenGoogle Scholar
  20. Nemat-Nasser, S., Yu, N., Hori, M. 1993Bounds and estimates of overall moduli of composites with periodic microstructureMechanics of Materials15163181CrossRefGoogle Scholar
  21. Piltner, R. 1973Special finite element with hole and internal cracksInternational Journal for Numerical Methods in Engineering7297308Google Scholar
  22. Slot, T., O’Donnell, W.J. 1971Effective elastic constants for thick perforated plates with square and triangular penetrations patternsJournal of Engineering for Industry9510811088Google Scholar
  23. Tsai, S.W., Hahn, H.T. 1980Introduction to Composite MaterialsTechnomic Publishing Co.Westport, Connecticut, USAGoogle Scholar
  24. Zhang, J., Katsube, N. 1997A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voidsComputer Methods in Applied Mechanics and Engineering148225234CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.DIEMUniversity of BolognaBolognaItaly
  2. 2.Department of Mechanical EngineeringUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations