Evaluation of Cracks in Elastic Media using Surface Signals

  • X.D. Wang
  • G.L. Huang


This paper provides a theoretical study of quantitatively identifying cracks in plane elastic media from surface signals induced by a piezoelectric actuator. The surface signals are used as the boundary condition of the problem to generate a reverse wave field, which represents the scattered waves from the cracks. An imaging technique is then used to determine the sizes, shapes and positions of existing cracks based on the determined scattered waves. Numerical examples are provided to show the feasibility of using surface signals to characterize embedded cracks.


crack identification imaging piezoelectric actuator surface signals wave propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, J.D. 2000Quantitative nondestructive evaluationInternational Journal of Solids and Structures371327CrossRefGoogle Scholar
  2. Chien, L.S. (1997). In situ damage detection of plates by migration technique. AIAA-97-1225, Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, Kissimmee FL, April 7–10, pp. 1110–1114.Google Scholar
  3. Deutsch, W.A.K., Cheng, A., Achenbach, J.D. 1997Self-focusing of Rayleigh waves and Lamb waves with a linear phased arrayResearch in Nondestructive Evaluation98195Google Scholar
  4. Hoop, A.T. 1960A modification of Cagniard’s method for solving seismic pulse problemsApplied Science ResearchB8349356Google Scholar
  5. Docherty, P. 1991A brief comparison of some Kirchhoff integral formulas for migration and inversionGeophysics5611641169CrossRefGoogle Scholar
  6. Fink, M. 1993Time-reversal mirrorsJournal of Physics D: Applied Physics2613331350CrossRefGoogle Scholar
  7. Fink, M., Prada, C. 2001Acoustic time-reversal mirrorsInverse Problems17R1R38CrossRefGoogle Scholar
  8. Fink, M., Montaldo, G., Tanter, M. 2003Time-reversal acoustics in biomedical engineeringAnnual Review of Biomedical Engineering5465497CrossRefPubMedGoogle Scholar
  9. Fukunaga, H., Hu, N., Chang, F.K. 2002Structural damage identification using piezoelectric sensorsInternational Journal of Solids and Structures39393418CrossRefGoogle Scholar
  10. Giurgiutiu, V., Zagrai, A., Bao, J. 2002Piezoelectric wafer embedded active sensors for aging structural health monitoringStructural Health Monitoring14161Google Scholar
  11. Giurgiutiu, V., Roger, C.A. 1999Modelling of the electro-mechanical (E/M) impedance response of a damaged composite beamAdaptive Structures and Materials Systems873946Google Scholar
  12. Keilers, C.H., Change, F.K. 1995Identification delamination in composite beams using built-in piezoelectrics: Part I-experimental and analysisJournal of Intelligent Materials Systems and Structures6649663Google Scholar
  13. Kessler, S.S., Spearing, S.M. 2002Damage detection in composite materials using Lamb wave methodsSmart Materials and Structures11269278CrossRefGoogle Scholar
  14. Kuo, T., Dai, T. 1984Kirchhoff elastic wave migration for the case of noncoincident source and receiverGeophysics4912231238CrossRefGoogle Scholar
  15. Lin, X. and Yuan, F.G. (2000). Pre-stack reverse time migration in structural health monitoring. Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASc Structures, Structural Dynamics, and Materials Conference, Atlanta, GA, April 3–6, pp. 1984–1994.Google Scholar
  16. Lin, X., Yuan, F.G. 2001Detection of multiple damages by prestack reverse-time migrationAIAA Journal3922062215Google Scholar
  17. Mal, A.K. 2000The role of NDE in structural health monitoring of aging aircraft and aerospace structuresProceedings of SPIE, Nonde- structive Evaluation of Aging Aircraft, Airports and Aerospace Hardware IV, Newport Beach, California, March 7–83994ixxiiiGoogle Scholar
  18. Mal, A.K. (2001). NDE for health monitoring of aircraft and aerospace structures. Proceedings of the 7th ASME NDE Topical Conference, NDE-20, San Antonio, Texas, April 23–25, pp. 149–155.Google Scholar
  19. Marklein, R., Mayer, K., Hannemann, R., Krylow, T., Balasubramanian, K., Langenberg, K.J., Schmitz, V. 2002Linear and nonlinear inversion algorithms applied in nondestructive evaluationInverse Problems1817331759CrossRefGoogle Scholar
  20. Okafor, A.C., Chandrashekhara, K., Jiang, Y.P. 1996Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural networkSmart Materials and Structures5338347CrossRefGoogle Scholar
  21. Park, S.B., Sun, C.T. 1994Crack extension in piezoelectric materialsProceedings of SPIE, Smart Structures and Materials 1994: Smart Materials, Orlando, FL, February 13-182189357368Google Scholar
  22. Rose, J.L. (1999). Ultrasonic Waves in Solid Media. Cambridge University Press.Google Scholar
  23. Sun, R., Mcmechan, G.A. 1986Pre-stack reverse time migration for elastic waves with application to synthetic offset vertical seismic profilesProceedings of The IEEE74457465Google Scholar
  24. Tzou, H.S., Ye, R. 1994Piezothermoelasticity and precision control of piezoelectric systems: theory and finite element analysisJournal of Vibration and Acoustics116489495Google Scholar
  25. White, W., Valliappan, S., Lee, I.K. 1977Unified boundary for finite dynamic modelsJournal of the Engineering Mechanics Division ASCE103949963Google Scholar
  26. Wu, T.T. 1999Elastic wave propagation and nondestructive evaluation of materialsProceedings of the National Science Council, Republic of China (A)23703715Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Alberta EdmontonAlbertaCanada

Personalised recommendations