Advertisement

Analysis of hybrid beams composed of GFRP profiles and polymer concrete

  • A.J. Mendes Ferreira
  • M.C.S. Ribeiro
  • A. Torres Marques
Article

Abstract

In this paper, a numerical approach for the analysis of a new type of hybrid composite beams is presented. Such beams are composed of composite materials that resist shear and tensile stresses, and polymer concrete acommodating compression stresses.The beams offer an optimized configuration in terms of stiffness and strength, with much potential for mechanical and civil engineering structures.The current numerical model is based on a finite element formulation for layered shell-like structures. The model accounts for a polymer concrete material model, orthotropic material model, and considers the analysis of geometric and material nonlinearities. The first-order shear deformation theory is used in order to describe the shell deformation under a total Lagrangian formulation. The model is validated experimentally and a close agreement with experimental results makes this model an attractive solution method for this type of composite hybrid beams.

Keywords

polymer matrix composites polymer concrete FRP composite materials hybrid beam FEA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Concrete Institute Committee 548, (1986), Guide for the Use of Polymers in Concrete, American Concrete Institute, Detroit.Google Scholar
  2. Ahmad, S., Irons, B., Zienkiewicz, O.C. 1970Analysis of thick and thin structures by curved finite elementsInternational Journal for Numerical Methods in Engineering2419451Google Scholar
  3. Al-Salloum, Y.A.; Al-Sayed, S.H.; Almusallam, T.H. and Amjad, M.A., (1996), Evaluation of service load deflection for beams reinforced by GFRP bars, 2nd Int. Conf. Adv. Composite Mat. in Bridges and Struc., Montreal, Canada, pp.165–172.Google Scholar
  4. Bathe, K.-J, (1982). Finite Element Procedures in Engineering Analysis, Prentice-Hall.Google Scholar
  5. Chawalwala, A.J, (1999). Material Characteristics of Polymer Concrete, M.S. Thesis, University of Delaware Center for Composite Materials.Google Scholar
  6. Deskovic, N., Meier, U., Triantafillou, T. 1995Innovative design of FRP combined with concrete: Short term behaviourJournal of Structural Engineering12110691078Google Scholar
  7. Dikeou, J. eds. 1986Precast polymer concrete in the United States, 5th Int. Congress of Polymers in ConcreteBrightonEnglandGoogle Scholar
  8. Ferreira, A.J.M. (1997). Numerical Models for the Analysis of Laminated Composite and Sandwich Structures, Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto (in Portuguese).Google Scholar
  9. Ferreira, A.J.M., Marques, A.T.M., Sá, J.C. 2000Analysis of reinforced concrete with external composite strengtheningComposites Part B31527534Google Scholar
  10. Ferreira, A.J.M., Camanho, P.P., Marques, A.T.M., Fernandes, A.A. 2001Modelling of concrete beams reinforced with frp re-barsComposite Structures53107116Google Scholar
  11. Fowler, D.W. (1997). Structural design of polymer concrete, 3th Southern African Conference on Polymer in Concrete, Johannesburg, South Africa.Google Scholar
  12. Fowler, D.W. 1999Polymer in concrete: a vision for the 21st centuryCement and concrete Composites21449452Google Scholar
  13. Hall, J.E., Mottram, J.T. 1998Combined FRP reinforcement and permanent formwork for concrete membersJournal of Composites for ConstructionASCE 27886Google Scholar
  14. Kupfler, H., Hilsdorf, K.H., Rush, H. 1969Behaviour of concrete under biaxial stressesProceedings, American Concrete Institute66656666Google Scholar
  15. Mindlin, R.D. 1951Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic PlatesJ. Appl. Mech. 18(1)Trans. Asme 733138Google Scholar
  16. Mirmiran, A. 2001Innovative combinations of FRP and traditional materialsInt. Conference on FRP Composites in Civil Engineering (CICE-2001)II12891298Hong Kong, ChinaGoogle Scholar
  17. Nawy, E.G., Neuwert, G.E. 1977Fiberglass reinforced concrete slabs and beamsJ. Struct. Div., ASCE103421440Google Scholar
  18. Owen, D.R.J. and Figueiras, J.A. 1984, Ultimate load analysis of reinforced concrete plates and shells, in Finite Element Software for Plates and Shells, E. Hinton and D.R.J. Owen (Eds.), Pineridge Press.Google Scholar
  19. Ribeiro, M.C.S., Tavares, C.M.L., Ferreira, A.J.M. 2002Chemical resistance of epoxy and polyester polymer concrete to acids and saltsJournal of Polymer Engineering222744Google Scholar
  20. Ribeiro, M.C.S., Ferreira, A.J.M., Marques, A.T. 2001Static flexural performance of gfrp-polymer concrete hybrid beamsInt. Conference on FRP Composites in Civil Engineering (CICE-2001)II13551362Google Scholar
  21. Saadmatmanesh, H., Ehsani, M.R. 1991Fiber composite bar for reinforced concrete constructionJ. Compos. Mat.25188203Google Scholar
  22. Sekijima, K., Ogisako, E., Miyata, K., Hayashi, K. 2001Analytical study on flexural behavior of GFRP-concrete composite beamInt. Conference on FRP Composites in Civil Engineering (CICE-2001)II13631370Hong Kong, ChinaGoogle Scholar
  23. Tavares, C.M., Ribeiro, M.C., Figueiredo, M., Ferreira, A.J.M. and Fernandes, A.A. (2000). Influence of material parameters in the mechanical behaviour of polymer concrete, Mechanics and Materials in Design (MD3), S. Meguid (ed.), Orlando, USA, pp. 239–240.Google Scholar
  24. Tavares, C.M.L., Ribeiro, M.C.S., Ferreira, A.J.M., Guedes, R.M. 2002Creep behaviour of frp-reinforced polymer concreteComposite Structures574751Google Scholar
  25. Zienkiewicz, O.C. (1991). The Finite Element Method, McGraw-Hill.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A.J. Mendes Ferreira
    • 1
  • M.C.S. Ribeiro
    • 1
  • A. Torres Marques
    • 1
  1. 1.Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia daUniversidade do PortoPortoPortugal

Personalised recommendations