Skip to main content
Log in

Bounding univariate and multivariate reducible polynomials with restricted height

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(d,H \geqslant 2\), \(m, u \geqslant 0\) be some integers satisfying \(m+u \leqslant d\). Consider a set of univariate integer polynomials of degree d whose m coefficients for the highest powers of x and u coefficients for the lowest powers of x are fixed, whereas the remaining \(g=d-m-u+1\) coefficients are all bounded by H in absolute value. We show that among those \((2H+1)^g\) polynomials at most \(c d(2H+1)^{g-1}(\log (2H))^{\delta }\) are reducible over \(\mathbb Q\), where the constant \(c>0\) depends only on two extreme coefficients (if they are fixed) and does not depend on d and H. Here, \(\delta =2\) if \(m=u=0\); \(\delta =1\) if only one of mu is zero; \(\delta =0\) if none of mu is zero. This estimate is better than the previous one in certain range of d and H. We also prove an estimate for the number of integer reducible polynomials in \(n \geqslant 2\) variables of degree \(d \geqslant 1\) in each variable and height at most \(H \geqslant 1\). It is completely explicit in terms of ndH and implies that the probability for such a polynomial to be reducible tends to zero as \(\max (n,d,H) \rightarrow \infty \). The condition \(n \geqslant 2\) is essential in the proof: despite some recent progress the problem in general remains open for \(n=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama, A. Pethő, On the distribution of polynomials with bounded roots I. Polynomials with real coefficients. J. Math. Soc. Jpn. 66, 927–949 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Akiyama, A. Pethő, On the distribution of polynomials with bounded roots II. Polynomials with integer coefficients. Unif. Distrib. Theory 9, 5–19 (2014)

    MathSciNet  MATH  Google Scholar 

  3. L. Bary-Soroker, G. Kozma, Is a bivariate polynomial with \(\pm 1\) coefficients irreducible? very likely!. Int. J. Number Theory 13, 933–936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Bary-Soroker, G. Kozma, Irreducible polynomials of bounded height, preprint arXiv:1710.05165 (2017)

  5. M. Bhargava, J.E. Cremona, T. Fisher, N.G. Jones, J.P. Keating, What is the probability that a random integral quadratic form in n variables has an integral zero? Int. Math. Res. Not. IMRN 12, 3828–3848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Calegari, Z. Huang, Counting Perron numbers by absolute value. J. Lond. Math. Soc. 96, 181–200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Castillo, R. Dietmann, On Hilbert’s irreducibility theorem. Acta Arith. 180, 1–14 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Chela, Reducible polynomials. J. Lond. Math. Soc. 38, 183–188 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.-J. Chern, J.D. Vaaler, The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1–47 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Dörge, Abschätzung der Anzahl der reduziblen Polynome. Math. Ann. 160, 59–63 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Dubickas, Polynomials irreducible by Eisenstein’s criterion. Appl. Algebra Eng. Commun. Comput. 14, 127–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dubickas, On the number of reducible polynomials of bounded naive height. Manuscr. Math. 144, 439–456 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Dubickas, Counting integer reducible polynomials with bounded measure. Appl. Anal. Discrete Math. 10, 308–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Dubickas, M. Sha, Counting and testing dominant polynomials. Exp. Math. 24, 312–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Grizzard, J. Gunther, Slicing the stars: counting algebraic integers, and units by degree and height. Algebra Number Theory 11, 1385–1436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Heyman, I.E. Shparlinski, On the number of Eisenstein polynomials of bounded height. Appl. Algebra Eng. Commun. Comput. 24, 149–156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Heyman, I.E. Shparlinski, On shifted Eisenstein polynomials. Period. Math. Hung. 69, 170–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.V. Konyagin, On the number of irreducible polynomials with \(0,1\) coefficients. Acta Arith. 88, 333–350 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Koyuncu, F. Özbudak, Probabilities for absolute irreducibility of multivariate polynomials by the polytope method. Turkish J. Math. 35, 367–377 (2011)

    MathSciNet  MATH  Google Scholar 

  20. G. Kuba, On the distribution of reducible polynomials. Math. Slovaca 59, 349–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Micheli, R. Schnyder, The density of shifted and affine Eisenstein polynomials. Proc. Am. Math. Soc. 144, 4651–4661 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. A.M. Odlyzko, B. Poonen, Zeros of polynomials with \(0,1\) coefficients. Enseign. Math. 39, 317–348 (1993)

    MathSciNet  MATH  Google Scholar 

  23. I. Rivin, Galois groups of generic polynomials, preprint arXiv:1511.06446 (2015)

  24. G. Pólya, G. Szegö, Problems and Theorems in Analysis, vol. II (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  25. B.L. van der Waerden, Die Seltenhen der Gleichungen mit Affekt. Math. Ann. 109, 13–16 (1934)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. S-MIP-17-66/LSS-110000-1274) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Dubickas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubickas, A. Bounding univariate and multivariate reducible polynomials with restricted height. Period Math Hung 78, 98–109 (2019). https://doi.org/10.1007/s10998-018-0245-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-018-0245-0

Keywords

Mathematics Subject Classification

Navigation