Periodica Mathematica Hungarica

, Volume 77, Issue 1, pp 69–76 | Cite as

On structure-preserving connections

  • Arif Salimov


In this paper we find the formula of connections under which an almost complex structure is covariantly constant. These types of connections on anti-Kähler–Codazzi manifolds are described. Also, twin metric-preserving connections are analyzed for quasi-Kähler manifolds. Finally, anti-Hermitian Chern connections are investigated.


Almost complex structure Semi-Riemannian metric Anti-Hermitian structure Anti-Kähler–Codazzi manifold Anti-Kähler manifold Quasi-Kähler manifold Chern connection 

Mathematics Subject Classification

53C15 53C05 


  1. 1.
    C.-L. Bejan, M. Crasmareanu, Conjugate connections with respect to a quadratic endomorphism and duality. Filomat 30(9), 2367–2374 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A.M. Blaga, M. Crasmareanu, The geometry of complex conjugate connections. Hacet. J. Math. Stat. 41(1), 119–126 (2012)MathSciNetMATHGoogle Scholar
  3. 3.
    A.M. Blaga, M. Crasmareanu, The geometry of product conjugate connections. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 59(1), 73–84 (2013)MathSciNetMATHGoogle Scholar
  4. 4.
    A.M. Blaga, M. Crasmareanu, The geometry of tangent conjugate connections. Hacet. J. Math. Stat. 44(4), 767–774 (2015)MathSciNetMATHGoogle Scholar
  5. 5.
    S.S. Chern, Characteristic classes of Hermitian manifolds. Ann. Math. 47, 85–121 (1946)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    V. Cruceanu, Almost product bicomplex structures on manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51(1), 99–118 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    G.T. Ganchev, A.V. Borisov, Note on the almost complex manifolds with Norden metric. Comput. Rend. Acad. Bulg. Sci. 39, 31–34 (1986)MathSciNetMATHGoogle Scholar
  8. 8.
    K. Gribachev, M. Manev, D. Mekerov, A Lie group as a 4-dimensional quasi-Kahler manifold with Norden metric. JP J. Geom. Topol. 6, 55–68 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    M. Iscan, A. Salimov, On Kähler-Norden manifolds. Proc. Indian Acad. Sci. (Math. Sci.) 119(1), 71–80 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A.P. Norden, On a class of four-dimensional A-spaces. (Russian) Izv. Vyssh. Uchebn. Zaved. Matematika 17(4), 145–157 (1960)MathSciNetGoogle Scholar
  11. 11.
    M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure. Jpn. J. Math. 26, 43–77 (1956)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Salimov, On anti-Hermitian metric connections. C. R. Math. Acad. Sci. Paris 352(9), 731–735 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. Salimov, S. Turanli, Curvature properties of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris 351(5–6), 225–227 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    S. Tachibana, Analytic tensor and its generalization. Tohoku Math. J. 12(2), 208–221 (1960)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    V.V. Vishnevskii, Integrable affinor structures and their plural interpretations. J. Math. Sci. (N. Y.) 108(2), 151–187 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    K. Yano, Differential Geometry on Complex and Almost Complex Spaces (Pergamon Press, New York, 1965)MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Algebra and GeometryBaku State UniversityBakuAzerbaijan

Personalised recommendations