Advertisement

Periodica Mathematica Hungarica

, Volume 67, Issue 1, pp 1–14 | Cite as

Cyclic branched coverings of some pretzel links

  • Alberto Cavicchioli
  • Fulvia Spaggiari
Article
  • 77 Downloads

Abstract

We construct infinite families of closed connected orientable 3-manifolds obtained from certain triangulated 3-cells by pairwise identifications of their boundary faces. Our combinatorial constructions extend and complete a particular polyhedral scheme which Kim and Kostrikin used in [10] and [11] to define a series of spaces denoted M 3(n). Then we determine geometric presentations of the fundamental groups, and prove that many of the constructed manifolds are n-fold (non-strongly) cyclic coverings of the 3-sphere branched over some specified pretzel links.

Key words and phrases

3-manifolds group presentations spines orbifolds polyhedral schemata branched coverings 

Mathematics subject classification numbers

57M12 57M25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Barbieri, A. Cavicchioli and F. Spaggiari, Seifert hyperelliptic manifolds, Int. J. Pure Appl. Math., 6 (2003), 317–342.MathSciNetMATHGoogle Scholar
  2. [2]
    E. Barbieri, A. Cavicchioli and F. Spaggiari, Some series of honey-comb spaces, Rocky Mountain J. Math., 39 (2009), 381–398.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    J. S. Birman and H.M. Hilden, Heegaard splittings of branched coverings of \(\mathbb{S}^3\), Trans. Amer. Math. Soc., 213 (1975), 315–352.MathSciNetMATHGoogle Scholar
  4. [4]
    A. Cavicchioli, F. Hegenbarth and A. C. Kim, A geometric study of Sieradski groups, Algebra Colloq., 5 (1998), 203–217.MathSciNetMATHGoogle Scholar
  5. [5]
    A. Cavicchioli and L. Paoluzzi, On certain classes of hyperbolic 3-manifolds, Manuscripta Math., 101 (2000), 457–494.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    A. Cavicchioli, L. Paoluzzi and F. Spaggiari, On the classification of Kim and Kostrikin manifolds, J. Knot Theory Ramification, 15 (2006), 549–569.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    F. Grunewald and U. Hirsch, Link complements arising from arithmetic group actions, Internat. J. Math., 6 (1995), 337–370.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    H. M. Hilden, M. T. Lozano and J. M. Montesinos, On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant, J. Knot Theory Ramification, 4 (1995), 81–114.MATHCrossRefGoogle Scholar
  9. [9]
    A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel — Boston — Berlin, 1996.MATHGoogle Scholar
  10. [10]
    A. C. Kim and A. I. Kostrikin, Three series of 3-manifolds and their fundamental groups, Dokl. Akad. Nauk., 340 (1995), 158–160 (in Russian).MathSciNetGoogle Scholar
  11. [11]
    A. C. Kim and A. I. Kostrikin, Certain balanced groups and 3-manifolds, Mat. Sbornik, 188 (1997), 3–24 (in Russian); English translation in: Sbornik Math., 188 (1997), 173–194.MathSciNetGoogle Scholar
  12. [12]
    P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics 291, Springer, Berlin — Heidelberg — New York — Berkeley, 1972.MATHGoogle Scholar
  13. [13]
    D. Rolfsen, Knots and Links, Math. Lect. Ser. 7, Publish or Perish Inc., Berkeley, 1976.MATHGoogle Scholar
  14. [14]
    H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, New York — London, 1980.MATHGoogle Scholar
  15. [15]
    A. J. Sieradski, Combinatorial squashings, 3-manifolds and the third homotopy of groups, Invent. Math., 84 (1986), 121–139.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Takahashi, Two knots with the same 2-fold branched covering space, Yokohama Math. J., 25 (1977), 91–99.MathSciNetMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations