Periodica Mathematica Hungarica

, Volume 67, Issue 1, pp 1–14 | Cite as

Cyclic branched coverings of some pretzel links



We construct infinite families of closed connected orientable 3-manifolds obtained from certain triangulated 3-cells by pairwise identifications of their boundary faces. Our combinatorial constructions extend and complete a particular polyhedral scheme which Kim and Kostrikin used in [10] and [11] to define a series of spaces denoted M 3(n). Then we determine geometric presentations of the fundamental groups, and prove that many of the constructed manifolds are n-fold (non-strongly) cyclic coverings of the 3-sphere branched over some specified pretzel links.

Key words and phrases

3-manifolds group presentations spines orbifolds polyhedral schemata branched coverings 

Mathematics subject classification numbers

57M12 57M25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Barbieri, A. Cavicchioli and F. Spaggiari, Seifert hyperelliptic manifolds, Int. J. Pure Appl. Math., 6 (2003), 317–342.MathSciNetMATHGoogle Scholar
  2. [2]
    E. Barbieri, A. Cavicchioli and F. Spaggiari, Some series of honey-comb spaces, Rocky Mountain J. Math., 39 (2009), 381–398.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    J. S. Birman and H.M. Hilden, Heegaard splittings of branched coverings of \(\mathbb{S}^3\), Trans. Amer. Math. Soc., 213 (1975), 315–352.MathSciNetMATHGoogle Scholar
  4. [4]
    A. Cavicchioli, F. Hegenbarth and A. C. Kim, A geometric study of Sieradski groups, Algebra Colloq., 5 (1998), 203–217.MathSciNetMATHGoogle Scholar
  5. [5]
    A. Cavicchioli and L. Paoluzzi, On certain classes of hyperbolic 3-manifolds, Manuscripta Math., 101 (2000), 457–494.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    A. Cavicchioli, L. Paoluzzi and F. Spaggiari, On the classification of Kim and Kostrikin manifolds, J. Knot Theory Ramification, 15 (2006), 549–569.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    F. Grunewald and U. Hirsch, Link complements arising from arithmetic group actions, Internat. J. Math., 6 (1995), 337–370.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    H. M. Hilden, M. T. Lozano and J. M. Montesinos, On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant, J. Knot Theory Ramification, 4 (1995), 81–114.MATHCrossRefGoogle Scholar
  9. [9]
    A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel — Boston — Berlin, 1996.MATHGoogle Scholar
  10. [10]
    A. C. Kim and A. I. Kostrikin, Three series of 3-manifolds and their fundamental groups, Dokl. Akad. Nauk., 340 (1995), 158–160 (in Russian).MathSciNetGoogle Scholar
  11. [11]
    A. C. Kim and A. I. Kostrikin, Certain balanced groups and 3-manifolds, Mat. Sbornik, 188 (1997), 3–24 (in Russian); English translation in: Sbornik Math., 188 (1997), 173–194.MathSciNetGoogle Scholar
  12. [12]
    P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics 291, Springer, Berlin — Heidelberg — New York — Berkeley, 1972.MATHGoogle Scholar
  13. [13]
    D. Rolfsen, Knots and Links, Math. Lect. Ser. 7, Publish or Perish Inc., Berkeley, 1976.MATHGoogle Scholar
  14. [14]
    H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, New York — London, 1980.MATHGoogle Scholar
  15. [15]
    A. J. Sieradski, Combinatorial squashings, 3-manifolds and the third homotopy of groups, Invent. Math., 84 (1986), 121–139.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Takahashi, Two knots with the same 2-fold branched covering space, Yokohama Math. J., 25 (1977), 91–99.MathSciNetMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations