Periodica Mathematica Hungarica

, Volume 64, Issue 2, pp 213–225 | Cite as

On the Davenport constant and on the structure of extremal zero-sum free sequences

  • Alfred Geroldinger
  • Manfred Liebmann
  • Andreas Philipp


Let \(G = C_{n_1 } \oplus \cdots \oplus C_{n_r }\) with 1 < n 1 | … | n r be a finite abelian group, d*(G) = n 1 +…+n r r, and let d(G) denote the maximal length of a zerosum free sequence over G. Then d(G) ≥ d*(G), and the standing conjecture is that equality holds for G = C n r . We show that equality does not hold for C 2C 2n r , where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal zero-sum free sequences over C 2n r .

Key words and phrases

zero-sum sequence Davenport constant 

Mathematics subject classification numbers

11B30 11P70 20K01 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Zero-sum free sets with small sum-set, Math. Comp., 80 (2011), 2253–2258.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Inductive methods and zero-sum free sequences, Integers, 9 (2009), 515–536.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form ℤ3 ⊕ ℤ3 ⊕ ℤ3d, Additive Combinatorics (A. Granville, M. B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes 43, American Mathematical Society, 2007, pp. 307–326.Google Scholar
  4. [4]
    Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G), Des. Codes Cryptography, 47 (2007), 125–134.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., 58 (2007), 159–186.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica, 24 (2004), 351–358.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Freeze and W. A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math., 310 (2010), 3373–3389.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung., 38 (1999), 179–211.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    W. Gao and A. Geroldinger, Zero-sum problems and coverings by proper cosets, Eur. J. Comb., 24 (2003), 531–549.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006), 337–369.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. Gao, A. Geroldinger, and D.J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith., 141 (2010), 103–152.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    A. Geroldinger, Additive group theory and non-unique factorizations, Combi- natorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86.CrossRefGoogle Scholar
  13. [13]
    A. Geroldinger and D. J. Grynkiewicz, On the structure of minimal zero-sum sequences with maximal cross number, J. Combinatorics and Number Theory, 1:2 (2009), 9–26.MathSciNetGoogle Scholar
  14. [14]
    A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC, 2006.Google Scholar
  15. [15]
    A. Geroldinger and R. Schneider, On Davenport’s constant, J. Comb. Theory Ser. A, 61 (1992), 147–152.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    B. Girard, Inverse zero-sum problems and algebraic invariants, Acta Arith., 135 (2008), 231–246.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    B. Girard, A new upper bound for the cross number of finite abelian groups, Isr. J. Math., 172 (2009), 253–278.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    B. Girard, Inverse zero-sum problems in finite abelian p-groups, Colloq. Math., 120 (2010), 7–21.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordx., 23 (2011), 715–750.MathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Reiher, A proof of the theorem according to which every prime number possesses property B, J. London. Math. Soc., to appear.Google Scholar
  21. [21]
    S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math., 307 (2007), 2671–2679.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    W. A. Schmid, The inverse problem associated to the Davenport constant for C 2C 2C 2n, and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18 (2011), research paper 33.Google Scholar
  23. [23]
    W. A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), 333–343.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    D. Smertnig, On the Davenport constant and group algebras, Colloq. Math., 121 (2010), 179–193.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Zhi-Wei Sun, Zero-sum problems for abelian p-groups and covers of the integers by residue classes, Isr. J. Math., 170 (2009), 235–252.MATHCrossRefGoogle Scholar
  26. [26]
    P. Yuan and X. Zeng, A new result on Davenport constant, J. Number Theory, 129 (2009), 3026–3028.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Alfred Geroldinger
    • 1
  • Manfred Liebmann
    • 1
  • Andreas Philipp
    • 1
  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations