Skip to main content
Log in

On hitting times of affine boundaries by reflecting Brownian motion and Bessel processes

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary ta + bt, a ≥ 0, b ∈ ℝ, by a reflecting Brownian motion. The main tool hereby is Doob’s formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three-dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter δ > 0 and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. Stegun, Mathematical functions, Dover publications, Inc., New York, 1970.

    Google Scholar 

  2. M. Abundo, Some conditional crossing results of Brownian motion over a piecewise-linear boundary, Statist. Probab. Lett., 58 (2002), 131–145.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Alili and P. Patie, On the first crossing times of a Brownian motion and a family of continuous curves, C. R. Math. Acad. Sci. Paris, 340 (2005), 225–228.

    MATH  MathSciNet  Google Scholar 

  4. L. Alili and P. Patie, Boundary crossing identities for diffusions having the time inversion property, J. Theoret. Probab., 23 (2010), 65–84.

    Article  MATH  MathSciNet  Google Scholar 

  5. Ph. Biane, J. Pitman and M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. (N.S.), 38 (2001), 435–465.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ph. Biane and M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. (2), 111 (1987), 23–101.

    MATH  MathSciNet  Google Scholar 

  7. A. N. Borodin and P. Salminen, Handbook of Brownian motion — facts and formulae, 2nd edition, Birkhäuser, Basel, 2002.

    MATH  Google Scholar 

  8. L. Breiman, First exit times from a square root boundary, Proc. 5th Berkeley Symp. Math. Stat. Probab. Vol. 2, University of California, Berkeley, 1967, 9–16.

    Google Scholar 

  9. K. L. Chung, Excursions in Brownian motion, Ark. Mat., 14 (1976), 155–177.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. M. Cifarelli and E. Regazzini, Sugli stimatori non distorti a varianza minima di una classe di funzioni di probabilità troncate, Giorn. Econom. Ann. Econom. (N.S.), 32 (1973), 492–501.

    MathSciNet  Google Scholar 

  11. D. M. Delong, Crossing probabilities for a square root boundary by a Bessel process, Comm. Statist. A—Theory Methods, 10 (1981), 2197–2213.

    Article  MathSciNet  Google Scholar 

  12. D. M. Delong, Erratum: “Crossing probabilities for a square root boundary by a Bessel process”. [Comm. Statist. A—Theory Methods, 10(1981), 2197–2213; MR 82i:62119], Comm. Statist. A—Theory Methods, 12 (1983), 1699.

    MathSciNet  Google Scholar 

  13. J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statistics, 20 (1949), 393–403.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Durbin, Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test, J. Appl. Probability, 8 (1971), 431–453.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Durbin, The first passage density of a Brownian motion process to a curved boundary, J. Appl. Probab., 29 (1992), 291–304.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Durrett and D.I. Iglehart, Functionals of Brownian meander and Brownian excursion, Ann. Probability, 5 (1977), 130–135.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Feller, The asymptotic distribution of the range of sums of independent random variables, Ann. Math. Statistics, 22 (1951), 427–432.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Feller, An introduction to probability theory and its applications, Vol. II., Second edition, John Wiley & Sons Inc., New York, 1971.

    Google Scholar 

  19. P. Groeneboom, Brownian motion with a parabolic drift and Airy functions, Probab. Theory Related Fields, 81 (1989), 79–109.

    Article  MathSciNet  Google Scholar 

  20. D. Kennedy, The distribution of the maximum Brownian excursion, J. Appl. Probability, 13 (1976), 371–376.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. R. Lerche, Boundary crossing of Brownian motion, Lecture Notes in Statistics 40, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  22. A. Martin-Löf, The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier, J. Appl. Probab., 35 (1998), 671–682.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Mckean, Excursions of a non-singular diffusion, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1 (1963), 230–239.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Peskir and A.N. Shiryaev, Optimal stopping and free-boundary problems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2006.

    MATH  Google Scholar 

  25. J. Pitman and M. Yor, Bessel processes and infinitely divisible laws, Stochastic Integrals (ed.: D. Williams), Lecture Notes in Mathematics 851, Springer Verlag, Heidelberg — Berlin, 1981, 285–370.

    Chapter  Google Scholar 

  26. J. Pitman and M. Yor, The law of the maximum of a Bessel bridge, Electron. J. Probab., 4 (1999), 35 pp. (electronic).

  27. J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math., 55 (2003), 292–330.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, Springer Verlag, Berlin, 1999.

    MATH  Google Scholar 

  29. P. Salminen, On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. in Appl. Probab., 20 (1988), 411–426.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Salminen, On last exit decomposition of linear diffusions, Studia Sci. Math. Hungar., 33 (1997), 251–262.

    MATH  MathSciNet  Google Scholar 

  31. P. Salminen and M. Yor, On some probabilistic occurrences of the Poisson summation formula, in preparation.

  32. T. H. Scheike, A boundary-crossing result for Brownian motion, J. Appl. Probab., 29 (1992), 448–453.

    Article  MATH  MathSciNet  Google Scholar 

  33. L. A. Shepp, On the integral of the absolute value of the pinned Wiener process, Ann. Probab., 10 (1982), 234–239.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27 (1973), 37–46.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probab., 7 (1979), 143–149.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Williams, Path decompositions and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc., 28 (1974), 738–768.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Yor, On square-root boundaries for Bessel processes, and pole-seeking Brownian motion, Stochastic analysis and applications (Swansea, 1983), Lecture Notes in Mathematics 1095, Springer Verlag, Berlin, 1984, 100–107.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo Salminen.

Additional information

Dedicated to Endre Csáki and Pál Révész on the occasion of their 75th birthdays

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salminen, P., Yor, M. On hitting times of affine boundaries by reflecting Brownian motion and Bessel processes. Period Math Hung 62, 75–101 (2011). https://doi.org/10.1007/s10998-011-5075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-011-5075-2

Mathematics subject classification numbers

Key words and phrases

Navigation