Periodica Mathematica Hungarica

, Volume 55, Issue 1, pp 19–34 | Cite as

On the Jensen-Steffensen inequality for generalized convex functions

  • M. Klaričić Bakula
  • A. Matković
  • J. Pečarić


Jensen-Steffensen type inequalities for P-convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen-Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.

Key words and phrases

P-convex functions functions with nondecreasing increments Jensen-Steffensen inequality Čebyšev’s inequality Hölder’s inequality generalized quasiarithmetic means 

Mathematics subject classification number

26D15 26B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Abramovich, M. Klaričić Bakula, M. Matić and J. Pečarić, A variant of Jensen-Steffensen’s inequality and quasi-arithmetic means, J. Math. Anal. Appl., 307 (2005), 370–376.MATHCrossRefGoogle Scholar
  2. [2]
    H. D. Brunk, Integral inequalities for functions with nondecreasing increments, Pacific J. Math., 14 (1964), 783–793.MATHGoogle Scholar
  3. [3]
    P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, D. Reidel Publishing Company, 1988.Google Scholar
  4. [4]
    A. McD. Mercer, A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math., 4(4) (2003), Article 73.Google Scholar
  5. [5]
    J. E. Pečarić, On some inequalities for functions with nondecreasing increments, J. Math. Anal. Appl., 98 (1984), 188–198.CrossRefGoogle Scholar
  6. [6]
    J. E. Pečarić, Generalization of some results of H. Burkill and L. Mirsky and some related results, Period. Math. Hungar., 15(3) (1984), 241–247.CrossRefGoogle Scholar
  7. [7]
    J. E. Pečarić, Some inequalities for generalized convex functions of several variables, Period. Math. Hungar., 22(2) (1991), 83–90.CrossRefGoogle Scholar
  8. [8]
    J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., 1992.Google Scholar
  9. [9]
    T. Popoviciu, Les function convexes, Actualités Sci. Ind., 992 (1945), Paris.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Klaričić Bakula
    • 1
  • A. Matković
    • 2
  • J. Pečarić
    • 3
  1. 1.Department of Mathematics, Faculty of Natural Sciences, Mathematics and EducationUniversity of SplitSplitCroatia
  2. 2.Faculty of Electrical Engineering, Mechanical Engineering and Naval ArchitectureUniversity of SplitSplitCroatia
  3. 3.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations