Advertisement

Periodica Mathematica Hungarica

, Volume 51, Issue 2, pp 19–30 | Cite as

Normal structure and Pythagorean approach in Banach spaces

Article

Summary

Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>X$ be a real Banach space and $S(X) = \{x \in X: \|x\| = 1\}$ be the unit sphere of $X$. The parameters $E_{\epsilon}(X)=\sup\{\alpha_{\epsilon}(x): x \in S(X)\}$, $e_{\epsilon}(X)=\inf\{\alpha_{\epsilon}(x): x \in S(X)\}$, $F_{\epsilon}(X)=\sup\{\beta_{\epsilon}(x): x \in S(X)\}$, and $f_{\epsilon}(X)=\inf\{\beta_{\epsilon}(x): x \in S(X)\}$, where $\alpha_{\epsilon}(x) = \sup\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ and $\beta_{\epsilon}(x) = \inf\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$, are defined and studied. The main result is that a Banach space $X$ with $E_{\epsilon}(X) < 2 + 2\epsilon +\frac{1}{2}\epsilon^{2}$ for some $0\leq \epsilon \leq 1$ has uniform normal structure.

normal structure uniformly nonsquare space uniform normal structure and ultraproduct space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag/Akadémiai Kiadó 2005

Authors and Affiliations

  • Ji Gao
    • 1
  1. 1.Department of Mathematics Community College of Philadelphia

Personalised recommendations