Advertisement

Periodica Mathematica Hungarica

, Volume 49, Issue 2, pp 91–98 | Cite as

On RDGCn-commutative permutable semigroups

  • Zhonghao Jiang
  • Limin Chen
Article
permutable semigroup archimedean semigroup. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cherubini and A. Varisco, Permutable duo semigroups, Semigroup Forum 28 (1984), 155–172.Google Scholar
  2. [2]
    A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc. Providence, R.I., I (1961), II (1967).Google Scholar
  3. [3]
    H. Hamilton, Permutability of congruences on commutative semigroups, Semigroup Forum 10 (1975), 55–66.Google Scholar
  4. [4]
    Z. Jiang, LC-commutative permutable semigroups, Semigroup Forum 52 (1996), 191–196.Google Scholar
  5. [5]
    A. Nagy, RC-commutative Δ.-semigroups, Semigroup Forum 44 (1992), 332–340.Google Scholar
  6. [6]
    A. Nagy, RGC n-commutative Δ-semigroups, Semigroup Forum 57 (1998), 92–100.Google Scholar
  7. [7]
    M. Petrich, Lectures in semigroups, Akademie-Verlag, Berlin, 1977.Google Scholar
  8. [8]
    B. Pondelicek, On generalized conditionally commutative semigroups, Math. Slovaca 44 (1994), 359–364.Google Scholar
  9. [9]
    B. M. Schein, Commutative semigroups whose congruences form a chain, Bull. Acad. Polon. Soc. 17 (1969), 523–527.Google Scholar
  10. [10]
    T. Tamura, Commutative semigroups whose lattice of congruences is a chain, Bull. Soc. Math. France 97 (1969), 369–380.Google Scholar
  11. [11]
    T. Tamura and P. G. Trotter, Completely semisimple inverse Δ-semigroups admitting principal series, Pacific J. Math. 68 (1977), 515–525.Google Scholar
  12. [12]
    P. G. Trotter, Exponential Δ-semigroups, Semigroup Forum 12 (1976), 313–331.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2004

Authors and Affiliations

  • Zhonghao Jiang
    • 1
  • Limin Chen
    • 2
  1. 1.Department of MathematicsBeijing Jiaotong University BeijingPeople’s Republic of China
  2. 2.Department of MathematicsZhanjiang Normal College ZhanjiangGuangdongPeople’s Republic of China

Personalised recommendations