Maternal and Child Health Journal

, Volume 19, Issue 9, pp 1910–1915 | Cite as

Measurement of Perceived Stress Among Pregnant Women: A Comparison of Two Different Instruments

  • Amber E. Solivan
  • Xu Xiong
  • Emily W. Harville
  • Pierre Buekens
Methodological Notes


Assess the amount of agreement between the classification of stress from the Perceived Stress Scale (PSS) and the Assessment of Stress portion of the Prenatal Psychosocial Profile (PPP) among pregnant women. A secondary data analysis on a cross-sectional study of 301 pregnant women from the New Orleans and Baton Rouge areas who were exposed to Hurricane Katrina was conducted. Women with complete data (219) were analyzed. Women scoring in the third tertile of each instrument were compared. The kappa statistic was used to assess agreement between instruments. Additional comparisons were made with three instruments that measure other important psychosocial constructs that could be related to stress: the Edinburgh Depression Scale (EDS) and the Assessments of Support (partner and other support) and Self-Esteem from the PPP. No significant difference was found between the two tests. The PSS and the PPP were both statistically significantly correlated to each other (ρ = 0.71, p < 0.01). Thirty-five women were classified discordantly resulting in a Kappa Coefficient of 0.61 (95 % CI 0.50–0.72, p < 0.01). No significant differences were found between these two instruments in correlation with the EDS (PPP, r = 0.76; PSS, r = 0.72; p < 0.01 for each), partner support (PPP, r = −0.47; PSS r = −0.46; p < 0.01 for each), other support (PPP, r = −0.31; PSS r = −0.32; p < 0.01 for each) and self-esteem (PPP, r = −0.41; PSS, r = −0.52; p < 0.01 for each), respectively. Given the similarities between the PSS and PPP, researchers are encouraged to choose and administer one instrument to participants, or to use the instruments in combination as an external reliability check.


Stress Measurement Women Instrument Pregnancy 



Data collection was funded by NIH/NICHD 3U01HD040477-0552. Support for this analysis was provided by the NIH Grant 5T32HD057780-05.


  1. 1.
    McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 1–7. doi: 10.1196/annals.1314.001.PubMedCrossRefGoogle Scholar
  2. 2.
    McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583(2–3), 174–185. doi: 10.1016/j.ejphar.2007.11.071.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zhu, P., Huang, W., Hao, J. H., et al. (2013). Time-specific effect of prenatal stressful life events on gestational weight gain. International journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 122(3), 207–211. doi: 10.1016/j.ijgo.2013.04.007.CrossRefGoogle Scholar
  4. 4.
    Laszlo, K. D., Liu, X. Q., Svensson, T., et al. (2013). Psychosocial stress related to the loss of a close relative the year before or during pregnancy and risk of preeclampsia. Hypertension, 62(1), 183–189. doi: 10.1161/HYPERTENSIONAHA.111.00550.PubMedCrossRefGoogle Scholar
  5. 5.
    Keim, S. A., Daniels, J. L., Dole, N., et al. (2011). A prospective study of maternal anxiety, perceived stress, and depressive symptoms in relation to infant cognitive development. Early Human Development, 87(5), 373–380. doi: 10.1016/j.earlhumdev.2011.02.004.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Precht, D. H., Andersen, P. K., & Olsen, J. (2007). Severe life events and impaired fetal growth: A nation-wide study with complete follow-up. Acta Obstetricia et Gynecologica Scandinavica, 86(3), 266–275. doi: 10.1080/00016340601088406.PubMedCrossRefGoogle Scholar
  7. 7.
    Khashan, A. S., McNamee, R., Abel, K. M., et al. (2009). Rates of preterm birth following antenatal maternal exposure to severe life events: A population-based cohort study. Human Reproduction, 24(2), 429–437. doi: 10.1093/humrep/den418.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, J. L., Olsen, J., Sorensen, H. T., et al. (2013). Prenatal maternal bereavement and congenital heart defects in offspring: A registry-based study. Pediatrics, 131(4), e1225–e1230. doi: 10.1542/peds.2012-3024.PubMedCrossRefGoogle Scholar
  9. 9.
    Andersson, L., Sundstrom-Poromaa, I., Wulff, M., et al. (2004). Neonatal outcome following maternal antenatal depression and anxiety: A population-based study. American Journal of Epidemiology, 159(9), 872–881.PubMedCrossRefGoogle Scholar
  10. 10.
    Grote, N. K., Bridge, J. A., Gavin, A. R., et al. (2010). A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Archives of General Psychiatry, 67(10), 1012–1024. doi: 10.1001/archgenpsychiatry.2010.111.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dole, N., Savitz, D. A., Hertz-Picciotto, I., et al. (2003). Maternal stress and preterm birth. American Journal of Epidemiology, 157(1), 14–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Hobel, C. J., Goldstein, A., & Barrett, E. S. (2008). Psychosocial stress and pregnancy outcome. Clinical Obstetrics and Gynecology, 51(2), 333–348. doi: 10.1097/GRF.0b013e31816f2709.PubMedCrossRefGoogle Scholar
  13. 13.
    St-Laurent, J., De Wals, P., Moutquin, J. M., et al. (2008). Biopsychosocial determinants of pregnancy length and fetal growth. Paediatric and Perinatal Epidemiology, 22(3), 240–248. doi: 10.1111/j.1365-3016.2008.00926.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Copper, R. L., Goldenberg, R. L., Das, A., et al. (1996). The preterm prediction study: Maternal stress is associated with spontaneous preterm birth at less than thirty-five weeks’ gestation. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. American Journal of Obstetrics and Gynecology, 175(5), 1286–1292.PubMedCrossRefGoogle Scholar
  15. 15.
    Neggers, Y., Goldenberg, R., Cliver, S., et al. (2006). The relationship between psychosocial profile, health practices, and pregnancy outcomes. Acta Obstetricia et Gynecologica Scandinavica, 85(3), 277–285.PubMedCrossRefGoogle Scholar
  16. 16.
    Christian, L. M. (2012). Physiological reactivity to psychological stress in human pregnancy: Current knowledge and future directions. Progress in Neurobiology, 99(2), 106–116. doi: 10.1016/j.pneurobio.2012.07.003.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Rich-Edwards, J. W., & Grizzard, T. A. (2005). Psychosocial stress and neuroendocrine mechanisms in preterm delivery. American Journal of Obstetrics and Gynecology, 192(5 Suppl), S30–S35. doi: 10.1016/j.ajog.2005.01.072.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen, S., Kessler, R. C., & Gordon, L. U. (1995). Measuring stress: A guide for health and social scientists. New York: Oxford University Press.Google Scholar
  19. 19.
    Himes, K. P., & Simhan, H. N. (2011). Plasma corticotropin-releasing hormone and cortisol concentrations and perceived stress among pregnant women with preterm and term birth. American Journal of Perinatology, 28(6), 443–448. doi: 10.1055/s-0030-1270119.PubMedCrossRefGoogle Scholar
  20. 20.
    Hobel, C. J., Arora, C. P., & Korst, L. M. (1999). Corticotrophin-releasing hormone and CRH-binding protein. Differences between patients at risk for preterm birth and hypertension. Annals of the New York Academy of Sciences, 897, 54–65.PubMedCrossRefGoogle Scholar
  21. 21.
    Lavrakas P. J. (2008) Encyclopedia of survey research methods. Los Angeles, Calif.; London: Sage; 2008.
  22. 22.
    Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293–319. doi: 10.1146/annurev.clinpsy.1.102803.143938.PubMedCrossRefGoogle Scholar
  23. 23.
    DeLongis, A., Folkman, S., & Lazarus, R. S. (1988). The impact of daily stress on health and mood: Psychological and social resources as mediators. Journal of Personality and Social Psychology, 54(3), 486–495.PubMedCrossRefGoogle Scholar
  24. 24.
    Cox, J. L., Holden, J. M., & Sagovsky, R. (1987). Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. The British journal of psychiatry: The journal of mental science, 150, 782–786.CrossRefGoogle Scholar
  25. 25.
    Bergink, V., Kooistra, L., Lambregtse-van den Berg, M. P., et al. (2011). Validation of the Edinburgh Depression Scale during pregnancy. Journal of Psychosomatic Research, 70(4), 385–389. doi: 10.1016/j.jpsychores.2010.07.008.PubMedCrossRefGoogle Scholar
  26. 26.
    Xiong, X., Harville, E. W., Mattison, D. R., et al. (2010). Hurricane Katrina experience and the risk of post-traumatic stress disorder and depression among pregnant women. American Journal of Disaster Medicine, 5(3), 181–187.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Xiong, X., Harville, E. W., Mattison, D. R., et al. (2008). Exposure to Hurricane Katrina, post-traumatic stress disorder and birth outcomes. The American Journal of the Medical Sciences, 336(2), 111–115. doi: 10.1097/MAJ.0b013e318180f21c.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Cohen, S. (1988). Perceived stress in a probability sample of the United States. In S. Spacapan & S. Oskamp (Eds.), The social psychology of health (pp. 31–67). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
  29. 29.
    Curry, M. A., Burton, D., & Fields, J. (1998). The prenatal psychosocial profile: A research and clinical tool. Research in Nursing and Health, 21(3), 211–219.PubMedCrossRefGoogle Scholar
  30. 30.
    Curry, M. A., Campbell, R. A., & Christian, M. (1994). Validity and reliability testing of the prenatal psychosocial profile. Research in Nursing and Health, 17(2), 127–135.PubMedCrossRefGoogle Scholar
  31. 31.
    Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396.PubMedCrossRefGoogle Scholar
  32. 32.
    Berge, H. M., Steine, K., Andersen, T. E., et al. (2014). Visual or computer-based measurements: Important for interpretation of athletes’ ECG. British Journal of Sports Medicine, 48(9), 761–767. doi: 10.1136/bjsports-2014-093412.PubMedCrossRefGoogle Scholar
  33. 33.
    Rank, M. A., Bertram, S., Wollan, P., et al. (2014). Comparing the asthma APGAR system and the asthma control test in a multicenter primary care sample. Mayo Clinic Proceedings. doi: 10.1016/j.mayocp.2014.02.016.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amber E. Solivan
    • 1
  • Xu Xiong
    • 1
  • Emily W. Harville
    • 1
  • Pierre Buekens
    • 1
  1. 1.Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansUSA

Personalised recommendations