Ranking by inspiration: a network science approach


Contagion processes have been widely studied in epidemiology and life science in general, but their implications are largely tangible in other research areas, such as in network science and computational social science. Contagion models, in particular, have proven helpful in the study of information diffusion, a very topical issue thanks to its applications to social media/network analysis, viral marketing campaigns, influence maximization and prediction. In bibliographic networks, for instance, an information diffusion process takes place when some authors, that publish papers in a given topic, influence some of their neighbors (coauthors, citing authors, collaborators) to publish papers in the same topic, and the latter influence their neighbors in their turn. This well-accepted definition, however, does not consider that influence in bibliographic networks is a complex phenomenon involving several scientific and cultural aspects. In fact, in scientific citation networks, influential topics are usually considered those ones that spread most rapidly in the network. Although this is generally a fact, this semantics does not consider that topics in bibliographic networks evolve continuously. In fact, knowledge, information and ideas are dynamic entities that acquire different meanings when passing from one person to another. Thus, in this paper, we propose a new definition of influence that captures the diffusion of inspiration within the network. We call it inspiration score, and show its effectiveness in detecting the most inspiring topics, authors, papers and venues in a citation network built upon two large bibliographic datasets. We show that the inspiration score can be used as an alternative or complementary bibliographic index in academic ranking applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.


  2. 2.


  3. 3.

    Dataset encoded in ArnetMiner V8 format, https://github.com/rupensa/tranet.

  4. 4.


  5. 5.


  6. 6.


  7. 7.


  8. 8.


  9. 9.

    The dataset is made available within the SNAP project at https://snap.stanford.edu/data/cit-HepTh.html.


  1. Aral, S., & Dhillon, P. S. (2018). Social influence maximization under empirical influence models. Nature Human Behaviour, 2, 375.

    Article  Google Scholar 

  2. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. A. (2012). The role of social networks in information diffusion. In Proceedings of WWW 2012 (pp. 519–528). ACM.

  3. Barbieri, N., Bonchi, F., & Manco, G. (2013). Topic-aware social influence propagation models. Knowledge and Information Systems, 37(3), 555–584.

    Article  Google Scholar 

  4. Bioglio, L., Rho, V., & Pensa, R. G. (2017). Measuring the inspiration rate of topics in bibliographic networks. In Discovery science—20th international conference, DS 2017, Kyoto, Japan, October 15–17, 2017, Proceedings. Lecture notes in computer science (Vol. 10558, pp. 309–323). Springer.

  5. Boguslawski, B., Sarhan, H., Heitzmann, F., Seguin, F., Thuries, S., Billoint, O., et al. (2015). Compact interconnect approach for networks of neural cliques using 3d technology. Proceedings of IFIP/IEEE VLSI-SoC, 2015, 116–121.

    Google Scholar 

  6. Britton, T. (2010). Stochastic epidemic models: A survey. Mathematical Biosciences, 225(1), 24–35.

    MathSciNet  Article  Google Scholar 

  7. Chen, W., Wang, Y., & Yang, S. (2009). Efficient influence maximization in social networks. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 199–208). Paris, France, ACM, June 28–July 1.

  8. Cialdini, R. B., & Trost, M. R. (1998). Social influence: Social norms, conformity, and compliance (Vol. 2, pp. 151–192). New York: McGraw-Hill.

    Google Scholar 

  9. Coates, A., Huval, B., Wang, T., Wu, D. J., Catanzaro, B., & Ng, A. Y. (2013). Deep learning with COTS HPC systems. In Proceedings of ICML 2013, JMLR.org (pp. 1337–1345).

  10. Cui, P., Wang, F., Liu, S., Ou, M., Yang, S., & Sun, L. (2011). Who should share what?: Item-level social influence prediction for users and posts ranking. In Proceeding of ACM SIGIR 2011 (pp. 185–194). ACM.

  11. Daley, D. J., & Kendall, D. G. (1964). Epidemics and rumours. Nature, 208, 1118.

    Article  Google Scholar 

  12. Dorogovtsev, S. N., & Mendes, J. F. F. (2015). Ranking scientists. Nature Physics, 11, 882–883.

    Article  Google Scholar 

  13. Egghe, L. (2006). Theory and practice of the g-index. Scientometrics, 69(1), 131–152.

    MathSciNet  Article  Google Scholar 

  14. Gohr, A., Hinneburg, A., Schult, R., & Spiliopoulou, M. (2009). Topic evolution in a stream of documents. In Proceedings of SIAM SDM 2009 (pp. 859–870). SIAM.

  15. Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3), 211–223.

    Article  Google Scholar 

  16. Gruhl, D., Guha, R. V., Liben-Nowell, D., & Tomkins, A. (2004a). Information diffusion through blogspace. In Proceedings of WWW 2004 (pp. 491–501). ACM.

  17. Gruhl, D., Liben-Nowell, D., Guha, R. V., & Tomkins, A. (2004b). Information diffusion through blogspace. SIGKDD Explorations, 6(2), 43–52.

    Article  Google Scholar 

  18. Gui, H., Sun, Y., Han, J., & Brova, G. (2014). Modeling topic diffusion in multi-relational bibliographic information networks. In Proceedings of CIKM 2014 (pp. 649–658). ACM.

  19. He, Q., Chen, B., Pei, J., Qiu, B., Mitra, P., & Giles, C. L. (2009). Detecting topic evolution in scientific literature: How can citations help? In Proceedings of ACM CIKM 2009 (pp. 957–966). ACM.

  20. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653.

    MathSciNet  Article  Google Scholar 

  21. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  Google Scholar 

  22. Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 19193–19198.

    Article  Google Scholar 

  23. Hoffman, M. D., Blei, D. M., & Bach, F. R. (2010). Online learning for latent dirichlet allocation. Proceedings of NIPS, 2010, 856–864.

    Google Scholar 

  24. Ke, X., Khan, A., & Cong, G. (2018). Finding seeds and relevant tags jointly: For targeted influence maximization in social networks. In Proceedings of the 2018 international conference on management of data, SIGMOD conference 2018 (pp. 1097–1111). Houston, TX, USA, June 10–15, ACM 2018.

  25. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton: Princeton University Press.

    Google Scholar 

  26. Kempe, D., Kleinberg, J. M., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of ACM SIGKDD 2003 (pp. 137–146). ACM.

  27. Kim, M., Baek, I., & Song, M. (2018). Topic diffusion analysis of a weighted citation network in biomedical literature. JASIST, 69(2), 329–342.

    Google Scholar 

  28. Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. TWEB, 1(1), 5.

    Article  Google Scholar 

  29. Lutz, B., Rüdiger, M., & Hans-Dieter, D. (2008). Are there better indices for evaluation purposes than the h index? a comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and Technology, 59(5), 830–837.

    Article  Google Scholar 

  30. Maki, D. P., & Thompson, M. (1973). Mathematical models and applications: with emphasis on the social, life, and management sciences. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  31. Moreno, Y., Nekovee, M., & Pacheco, A. F. (2004). Dynamics of rumor spreading in complex networks. Physical Review E, 69(6), 066130.

    Article  Google Scholar 

  32. Nekovee, M., Moreno, Y., Bianconi, G., & Marsili, M. (2008). Theory of rumour spreading in complex social networks. CoRR abs/0807.1458.

  33. Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80, 056103.

    Article  Google Scholar 

  34. Řehůřek, R., & Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora. In Proceedings of LREC 2010 workshop on new challenges for NLP frameworks (pp. 45–50).

  35. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  36. Senanayake, U., Piraveenan, M., & Zomaya, A. Y. (2014). The p-index: Ranking scientists using network dynamics. In Proceedings of the international conference on computational science, ICCS 2014. Cairns, Queensland, Australia, 10–12 June, 2014, Procedia computer science (Vol. 29, pp. 465–477). Elsevier.

  37. Seo, J., & Seok, M. (2015). Digital CMOS neuromorphic processor design featuring unsupervised online learning. In Proceedings of IFIP/IEEE VLSI-SoC 2015 (pp. 49–51). IEEE.

  38. Shi, X., Tseng, B. L., & Adamic, L. A. (2009). Information diffusion in computer science citation networks. In Proceedings of ICWSM 2009. The AAAI Press

  39. da Silva, J. A. T., & Memon, A. R. (2017). Citescore: A cite for sore eyes, or a valuable, transparent metric? Scientometrics, 111(1), 553–556. https://doi.org/10.1007/s11192-017-2250-0.

    Article  Google Scholar 

  40. Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19(2), 279–281.

    MathSciNet  Article  Google Scholar 

  41. Sudbury, A. (1985). The proportion of the population never hearing a rumour. Journal of Applied Probability, 22, 443–446.

    MathSciNet  Article  Google Scholar 

  42. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction and mining of academic social networks. Proceedings of KDD, 2008, 990–998.

    Article  Google Scholar 

  43. Wang, Y., Fan, Q., Li, Y., & Tan, K. (2017). Real-time influence maximization on dynamic social streams. PVLDB, 10(7), 805–816.

    Google Scholar 

  44. Yang, J., & Counts, S. (2010a). Comparing information diffusion structure in weblogs and microblogs. In Proceedings of ICWSM 2010. The AAAI Press.

  45. Yang, J., & Counts, S. (2010b). Predicting the speed, scale, and range of information diffusion in twitter. In Proceedings of ICWSM 2010. The AAAI Press.

  46. Yang, S., & Zha, H. (2013). Mixture of mutually exciting processes for viral diffusion. In Proceedings of the 30th international conference on machine learning, ICML 2013. (Vol. 28, pp. 1–9). Atlanta, GA, USA, 16-21 June 2013, JMLR.org, JMLR workshop and conference proceedings.

  47. Zanette, D. H. (2002). Dynamics of rumor propagation on small-world networks. Physical Review E, 65(4), 041908.

    Article  Google Scholar 

  48. Zhou, J., Liu, Z., & Li, B. (2007). Influence of network structure on rumor propagation. Physics Letters A, 368(6), 458–463.

    Article  Google Scholar 

Download references


We wish to thank the anonymous reviewers for their valuable comments and suggestions. We also thank Prof. Igor Pesando for his support in interpreting the results on the high energy physics dataset. Finally, we thank all the researchers who participated in our survey for the assessment of part of the results. This work has been partially funded by Project MIMOSA (MultIModal Ontology-driven query system for the heterogeneous data of a SmArtcity, “Progetto di Ateneo Torino_call2014_L2_157”, 2015-17).

Author information



Corresponding author

Correspondence to Livio Bioglio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editors: Takuya Kida, Takeaki Uno, Tetsuji Kuboyama, Akihiro Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bioglio, L., Rho, V. & Pensa, R.G. Ranking by inspiration: a network science approach. Mach Learn 109, 1205–1229 (2020). https://doi.org/10.1007/s10994-019-05828-9

Download citation


  • Information diffusion
  • Bibliographic indexes
  • Citation networks
  • Topic modeling