Skip to main content
Log in

Representation of Functions and Total Antisymmetric Relations in Monadic Third Order Logic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

We analyze the representation of binary relations in general, and in particular of functions and of total antisymmetric relations, in monadic third order logic, that is, the simple typed theory of sets with three types. We show that there is no general representation of functions or of total antisymmetric relations in this theory. We present partial representations of functions and of total antisymmetric relations which work for large classes of these relations, and show that there is an adequate representation of cardinality in this theory (a result already shown in a somewhat different way by Henrard in unpublished work, but our approach differs from his in providing representations of bijections between sets in a stronger sense). The relation of our work to similar work by Henrard (to whom we are indebted) and Allen Hazen (who arrived at related results independently) is discussed. This work can be understood as part of a program of assessing the capabilities of (relatively) weak logical frameworks: our results are applicable for example, to the framework in David Lewis’s Parts of Classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boffa, M, & Crabbé, M. (1975). Les théorèmes 3-stratifiée de NF3. Comptes Rendus de l’Académie des Sciences Paris, t. 180.

  2. Burgess, J.P., Hazen, A.P., Lewis, D. (1991). Appendix on pairing. In Lewis, David, parts of classes (pp. 121–149). Oxford: Basil Blackwell.

  3. Fourny, L. (2005). Le nombre naturel de Frege dans les théories typées et difficultés associées. Master’s thesis, Catholic University of Louvain-la-Neuve.

  4. Grishin, V.N. (1969). Consistency of a fragment of Quine’s NF system. Soviet Mathematics - Doklady, 10, 1387–90.

    Google Scholar 

  5. Hazen, A.P. (1997). Relations in monadic third order logic. Journal of Philosophical Logic, 26(6), 619–628.

    Article  Google Scholar 

  6. Jech, T. (1978). Set theory (pp. 199–201). New York: Academic.

    Google Scholar 

  7. Kuratowski, C. (1922). Sur l’operation A de l’analysis situs. Fundamenta Mathematicae, 3, 182–199.

    Article  Google Scholar 

  8. Lewis, D. (1991). Parts of Classes. Oxford: Basil Blackwell.

    Google Scholar 

  9. Oswald, M. (1985). Axiomatique de Peano et Definitions Fregeene des Nombres Naturels dans les Familles d’Ensembles, Louvain-la-Neuve. Master’s thesis, Catholic University of Louvain-la-Neuve.

  10. Pabion, J.F. (1980). TT3I est équivalent à l’arithmétique du second ordre. Comptes Rendus hebdomadaires des séances de l’Académie des Sciences de Paris (série A), 290, 1117–1118.

    Google Scholar 

  11. Quine, W.O. (1937). New foundations for mathematical logic. American Mathematical Monthly, 44, 70–80.

    Article  Google Scholar 

  12. Ramsey, FP. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society, 25, 338–384.

    Google Scholar 

  13. Specker, E.P. (1962). Typical ambiguity. In E. Nagel (Ed.) Logic, methodology and philosophy of science (pp. 116–123). Stanford: Stanford University Press.

  14. Wang, H. (1970). Logic, computers, and sets (p. 406). New York: Chelsea.

    Google Scholar 

  15. Whitehead, A.N., & Russell, B. (1910, 1912 and 1913). Principia Mathematica, 3 vols. Cambridge: Cambridge University Press.

  16. Wiener, N. (1914). A simplification of the logic of relations. Proceedings of the Cambridge Philosophical Society, 17, 387–90.

    Google Scholar 

  17. Zermelo, E. (1908). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65, 107–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Randall Holmes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, M.R. Representation of Functions and Total Antisymmetric Relations in Monadic Third Order Logic. J Philos Logic 48, 263–278 (2019). https://doi.org/10.1007/s10992-018-9465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-018-9465-2

Keywords

Navigation