Advertisement

Journal of Philosophical Logic

, Volume 44, Issue 2, pp 163–176 | Cite as

The Dramatic True Story of the Frame Default

  • Vladimir Lifschitz
Article
  • 175 Downloads

Abstract

This is an expository article about the solution to the frame problem proposed in 1980 by Raymond Reiter. For years, his “frame default” remained untested and suspect. But developments in some seemingly unrelated areas of computer science—logic programming and satisfiability solvers—eventually exonerated the frame default and turned it into a basis for important applications.

Keywords

Frame problem Commonsense reasoning Default logic Answer set programming 

Notes

Acknowledgments

Thanks to Yuliya Lierler and to the anonymous referees for comments on a draft of this paper.

References

  1. 1.
    Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving: Cambridge University Press.Google Scholar
  2. 2.
    Bidoit, N., & Froidevaux, C. (1987). Minimalism subsumes default logic and circumscription in stratified logic programming. In: Proceedings LICS-87.Google Scholar
  3. 3.
    Dimopoulos, Y., Nebel, B., Koehler, J. (1997). Encoding planning problems in non-monotonic logic programs In Steel, S., & Alami, R. (Eds.), Proceedings of European Conference on Planning, (pp. 169–181): Springer.Google Scholar
  4. 4.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T. (2012). Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning: Morgan and Claypool Publishers.Google Scholar
  5. 5.
    Gelfond, M. (2008). Answer sets In van Harmelen, F., Lifschitz, V., Porter, B. (Eds.), Handbook of Knowledge Representation: Elsevier.Google Scholar
  6. 6.
    Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9, 365–385.CrossRefGoogle Scholar
  7. 7.
    Gomes, C. P., Kautz, H., Sabharwal, A., Selman, B. (2008). Satisfiability solvers In van Harmelen, F., Lifschitz, V., Porter, B. (Eds.), Handbook of Knowledge Representation, (pp. 89–134): Elsevier.Google Scholar
  8. 8.
    Haas, A. (1987). The case for domain-specific frame axioms In Brown, F.M. (Ed.), The Frame Problem in Artificial Intelligence, Proceedings 1987 Workshop.Google Scholar
  9. 9.
    Hanks, S., & McDermott, D. (1987). Nonmonotonic logic and temporal projection. Artificial Intelligence, 33 (3), 379–412.CrossRefGoogle Scholar
  10. 10.
    Kautz, H., & Selman, B. (1992). Planning as satisfiability. In: Proceedings of European Conference on Artificial Intelligence (ECAI).Google Scholar
  11. 11.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F. (2006). The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic, 7 (3), 499–562.CrossRefGoogle Scholar
  12. 12.
    Lifschitz, V. (2008). What is answer set programming? In: Proceedings of the AAAI Conference on Artificial Intelligence, (pp. 1594–1597): MIT Press.Google Scholar
  13. 13.
    Lloyd, J. (1987). Foundations of Logic Programming: Springer-Verlag. second, extended edition.Google Scholar
  14. 14.
    Marek, V., & Truszczynski, M. (1999). Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, (pp. 375–398): Springer Verlag.Google Scholar
  15. 15.
    McCarthy, J. (1986). Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence, 26 (3), 89–116.CrossRefGoogle Scholar
  16. 16.
    McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of artificial intelligence In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence (Vol. 4, pp. 463–502). Edinburgh: Edinburgh University Press.Google Scholar
  17. 17.
    Mueller, E. (2006). Commonsense reasoning: Elsevier.Google Scholar
  18. 18.
    Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25, 241–273.CrossRefGoogle Scholar
  19. 19.
    Niemelä, I., & Simons, P. (1997). Smodels—an implementation of the stable model and well-founded semantics for normal logic programs. In: Proceedings 4th Int’l Conference on Logic Programming and Nonmonotonic Reasoning (Lecture Notes in Artificial Intelligence 1265), (pp. 420–429): Springer.Google Scholar
  20. 20.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M. (2001). An A-Prolog decision support system for the Space Shuttle. In: Proceedings of International Symposium on Practical Aspects of Declarative Languages (PADL).Google Scholar
  21. 21.
    Pylyshyn, Z. W. (1987). Robot’s Dilemma: The Frame Problem in Artificial Intelligence. Westport: Greenwood Publishing Group Inc.Google Scholar
  22. 22.
    Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13, 81–132.CrossRefGoogle Scholar
  23. 23.
    Reiter, R. (1991). The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression In Lifschitz, V. (Ed.), Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, (pp. 359–380): Academic Press.Google Scholar
  24. 24.
    Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems: MIT Press.Google Scholar
  25. 25.
    Sandewall, E. (1994). Features and Fluents, vol. 1: Oxford University Press.Google Scholar
  26. 26.
    Schubert, L. (1990). Monotonic solution of the frame problem in the situation calculus: an efficient method for worlds with fully specified actions In Kyburg, H., Loui, R., Carlson, G. (Eds.), Knowledge Representation and Defeasible Reasoning, (pp. 23–67): Kluwer.Google Scholar
  27. 27.
    Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia: MIT Press.Google Scholar
  28. 28.
    Turner, H. (1997). Representing actions in logic programs and default theories: a situation calculus approach. Journal of Logic Programming, 31, 245–298.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TexasAustinUSA

Personalised recommendations