Journal of Philosophical Logic

, Volume 41, Issue 4, pp 671–709 | Cite as

Consequence Mining

Constants Versus Consequence Relations


The standard semantic definition of consequence with respect to a selected set X of symbols, in terms of truth preservation under replacement (Bolzano) or reinterpretation (Tarski) of symbols outside X, yields a function mapping X to a consequence relation \(\Rightarrow_X\). We investigate a function going in the other direction, thus extracting the constants of a given consequence relation, and we show that this function (a) retrieves the usual logical constants from the usual logical consequence relations, and (b) is an inverse to—more precisely, forms a Galois connection with—the Bolzano–Tarski function.


Consequence relation Constant Logical constant Bolzano Tarski Galois connection Replacement Substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrusán, M. (2011). Presuppositional and negative islands: A semantic account. Natural Language Semantics, 19(3), 257–321.CrossRefGoogle Scholar
  2. 2.
    Aczel, P. (1990). Replacement systems and the axiomatization of situation theory. In R. Cooper, K. Mukai, & J. Perry (Eds.), Situation theory and its applications (Vol. 1, pp. 3–33). Stanford: CLSI Publications.Google Scholar
  3. 3.
    Bar-Hillel, Y. (1950). Bolzano’s definition of analytic propositions. Theoria, 16(2), 91–117.CrossRefGoogle Scholar
  4. 4.
    Bolzano, B. (1837). Theory of science. Edited by J. Berg. D. Reidel: Dordrecht (1973)Google Scholar
  5. 5.
    Bonevac, D. (1985). Quantity and quantification. Noûs, 19, 229–247.CrossRefGoogle Scholar
  6. 6.
    Bonnay, D. (2008). Logicality and invariance. Bulletin of Symbolic Logic, 14(1), 29–68.CrossRefGoogle Scholar
  7. 7.
    Bonnay, D., & Westerståhl, D. (2010). Logical consequence inside out. In M. Aloni & K. Schulz (Eds.), Amsterdam colloquium 2009. LNAI (Vol. 6042, pp. 193–202). Heidelberg: Springer.Google Scholar
  8. 8.
    Carnap, R. (1937). The logical syntax of language. London: Kegan, Paul, Trench Trubner & Cie. Rev. ed. translation of Logische Syntax der Sprache, Wien: Springer (1934).Google Scholar
  9. 9.
    Dunn, M., & Belnap, N. (1968). The substitution interpretation of the quantifiers. Noûs, 4, 177–185.CrossRefGoogle Scholar
  10. 10.
    Feferman, S. (2010). Set-theoretical invariance criteria for logicality. Notre Dame Journal of Formal Logic, 51, 3–20.CrossRefGoogle Scholar
  11. 11.
    Fox, D., & Hackl, M. (2006). The universal density of measurement. Linguistics and Philosophy, 59(5), 537–586.Google Scholar
  12. 12.
    Gajewski, J. (2002). L-analyticity and natural language. Manuscript.Google Scholar
  13. 13.
    Gentzen, G. (1932). Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen. Mathematische Annalen, 107, 329–350. English translation. In M. E. Szabo (Ed.), The collected papers of Gerhard Gentzen. Amsterdam: North-Holland (1969).Google Scholar
  14. 14.
    Gómez-Torrente, M. (1996). Tarski on logical consequence. Notre Dame Journal of Formal Logic, 37(1), 125–151.CrossRefGoogle Scholar
  15. 15.
    Hertz, G. (1923). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 87, 246–269.CrossRefGoogle Scholar
  16. 16.
    Lewis, C. I., & Langford, C. H. (1932). Symbolig logic. New York: Dover.Google Scholar
  17. 17.
    MacFarlane, J. (2009). Logical constants. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2009 ed.).
  18. 18.
    Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Oxford: Oxford University Press.Google Scholar
  19. 19.
    Quine, W. (1976). Algebraic logic and predicate functors. In The ways of paradox (pp. 283–307). Cambridge: Harvard University Press.Google Scholar
  20. 20.
    Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-conclusion logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. 21.
    Tarski, A. (1930a). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I’. Monatshefte für Mathematik und Physik, 37, 361–404. English translation in [24].Google Scholar
  22. 22.
    Tarski, A. (1930b). Über einige fundamentale Begriffe der Metamathematik. Comptes rendus des séances de la Societeé des Sciences et des Lettres de Varsovie, 23, 22–29. English translation in Tarski [24].Google Scholar
  23. 23.
    Tarski, A. (1936). On the concept of logical consequence. In [24] (pp. 409–420).Google Scholar
  24. 24.
    Tarski, A. (1956). Logic, semantics, metamathematics. Oxford: Clarendon Press. Republished 1983 by Hackett Publishing, Indianapolis.Google Scholar
  25. 25.
    Tarski, A. (1986). What are logical notions?. History and Philosophy of Logic, 7, 145–154.CrossRefGoogle Scholar
  26. 26.
    van Benthem, J. (2003). Is there still logic in Bolzano’s key?. In E. Morscher (Ed.), Bernard Bolzanos Leistungen in Logik, Mathematik und Physik Bd. 16 (pp. 11–34). Sankt Augustin: Academia.Google Scholar
  27. 27.
    Westerståhl, D. (2011). From constants to consequence, and back. Synthese (online first). doi: 10.1007/s11229-011-9902-z.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Département de PhilosophieUniversité Paris Ouest NanterreParisFrance
  2. 2.University of GothenburgGothenburgSweden
  3. 3.Stockholm UniversityStockholmSweden

Personalised recommendations