Skip to main content
Log in

Paradox and Potential Infinity

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aristotle (1984). Physics. In J. Barnes (Ed.), The complete works of Aristotle (Vol. 1, pp. 315–446). Bollingen Series LXXI. 2. Princeton, NJ: Princeton University Press. [References by Bekker number].

    Google Scholar 

  2. Beeson, M. (1985). Foundations of constructive mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (Vol. 6, xxiii+466). Berlin, DE: Springer-Verlag.

    Google Scholar 

  3. Bolzano, B. (1851). Paradoxion des Unendlichen (xii+134 pp.). Leipzig, DE: C. H. Reclam. Reprinted as Paradoxes of the infinite (189 pp.). D. A. Steele (tr.) New Haven: Yale University Press (1950). [Translations of passages from this work are by the author].

  4. Brouwer, L. E. J. (1975). Points and spaces. In A. Heyting (Ed.), L. E. J. Brouwer collected works. Philosophy and foundations of mathematics (Vol. 1, pp. 522–538). Amsterdam, NL: North-Holland Publishing Company.

    Google Scholar 

  5. Chomsky, N. (1981). On the representation of form and function. The linguistic review (Vol. 1, pp. 3–40).

  6. Crossley, J., & Nerode, A. (1974). Combinatorial functors. Ergebnisse der mathematik und ihrer Grenzgebiete. Band 81 (viii+146). New York, NY: Springer-Verlag.

    Google Scholar 

  7. Dedekind, R. (1888). Was sind und was sollen die Zahlen? (xv + 58). Braunsweig, DE: Friedrich Vieweg und Sohn. Reprinted as The nature and meaning of numbers. Essays on the theory of numbers (pp. 29–115). W. Beman (tr.) New York: Dover Publications (1963).

  8. Dekker, J., & Myhill, J. (1960). Recursive equivalence types (Vol. 3, number 3, pp. 67–214). New series. University of California Publications in Mathematics.

  9. Du Bois-Reymond, P. (1882). Die allgemeine Funktionentheorie (xiv+292). Tübingen, DE: Verlag der H. Laupp’schen Buchhandlung. [Translations from this work are by the author].

    Google Scholar 

  10. Dummett, M. (1977). Elements of intuitionism (1st ed., xii+467). Oxford, UK: Clarendon Press. (Second Edition (2000)).

    Google Scholar 

  11. Gibson, C. G. (1971). On the definition of an infinite species. Nieuw Archief voor Wiskunde (Third Series, no. 19, pp. 196–197).

  12. Grayson, R. (1978). Intuitionistic set theory (v+117). D. Phil. Dissertation. Oxford, UK: University of Oxford.

  13. Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch- mathematische Klasse (pp. 42–56).

  14. Heyting, A. (1930). Die formalen Regeln der intuitionistischen Mathematik I. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch- mathematische Klasse (pp. 57–71).

  15. Heyting, A. (1930). Die formalen Regeln der intuitionistischen Mathematik II. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse (pp. 158–169).

  16. Heyting, A. (1976). Intuitionism. An introduction (3rd revised ed., ix+137). Amsterdam, NL: North-Holland Publishing Company.

    Google Scholar 

  17. Kant, I. (1929). Critique of pure reason (xiii+681). N. K. Smith (tr.) New York, NY: St. Martin’s Press.

  18. Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic, 10(4), 109–124.

    Article  Google Scholar 

  19. McCarty, C. (1984). Realizability and recursive mathematics (281 pp.). Pittsburgh, PA: Department of Computer Science, Carnegie-Mellon University. Report number CMU-CS-84-131.

    Google Scholar 

  20. McCarty, C. (1988). Markov’s principle, isols, and Dedekind-finite sets. The Journal of Symbolic Logic, 53(4), 1042–1069.

    Article  Google Scholar 

  21. McCarty, C. (2006). Thesis and variations. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church’s thesis after 70 years (pp. 281–303). Frankfurt, DE: Ontos Verlag.

    Google Scholar 

  22. McCarty, C. (2008). The new intuitionism. In M. van Atten, et al. (Eds.), One hundred years of intuitionism (1907–2007) (pp. 37–49). Boston, MA: Birkhuser.

    Chapter  Google Scholar 

  23. Minio, R. (1974). Finite and countable sets in intuitionistic analysis (35 pp.). M.Sc. dissertation. Oxford, UK: University of Oxford.

  24. Nelson, E. (1986). Predicative arithmetic. Mathematical notes (Number 32, viii+189). Princeton, NJ: Princeton University Press.

    Google Scholar 

  25. Rogers, H. (1967). Theory of recursive functions and effective computability (xix+482). New York: McGraw-Hill Publishing Company.

    Google Scholar 

  26. Thomson, J. (1954). Tasks and super-tasks. Analysis, 15(1), 1–13.

    Google Scholar 

  27. Troelstra, A. (1967). Finite and infinite in intuitionistic mathematics. Compositio Mathematica, 18(1–2), 94–116.

    Google Scholar 

  28. Troelstra, A., & D. van Dalen (1988). Constructivism in mathematics: An introduction (Vol. I, xx+342+XIV). Amsterdam, NL: North-Holland.

    Google Scholar 

  29. Wittgenstein, L. (1976). In C. Diamond (Ed.), Wittgenstein’s lectures on the foundations of mathematics. Cambridge, 1939 (300 pp.). Ithaca, NY: Cornell University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles McCarty.

Additional information

This paper is dedicated to the memory of Professor Barbara C. Scholz (1947–2011). She was first a student, later a colleague, always a friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, C. Paradox and Potential Infinity. J Philos Logic 42, 195–219 (2013). https://doi.org/10.1007/s10992-011-9218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-011-9218-y

Keywords

Navigation