Journal of Philosophical Logic

, Volume 42, Issue 1, pp 91–124 | Cite as

The Many Faces of Closure and Introspection

An Interactive Perspective
  • Patrick Allo


In this paper I present a more refined analysis of the principles of deductive closure and positive introspection. This analysis uses the expressive resources of logics for different types of group knowledge, and discriminates between aspects of closure and computation that are often conflated. The resulting model also yields a more fine-grained distinction between implicit and explicit knowledge, and places Hintikka’s original argument for positive introspection in a new perspective.


Closure Common knowledge Deductive omniscience Distributed knowledge Epistemic logic Introspection Knowability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S. (2008). Information, processes and games. In J. Van Benthem & P. Adriaans (Eds.), Handbook on the philosophy of information (pp. 483–550). Amsterdam: Elsevier.CrossRefGoogle Scholar
  2. 2.
    Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., & De Lima, T. (2008). Knowable as known after an announcement. The Review of Symbolic Logic, 1(3), 305–334.CrossRefGoogle Scholar
  3. 3.
    Baltag, A., & Moss L. S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.CrossRefGoogle Scholar
  4. 4.
    Barwise, J. (1988). Three views of common knowledge, TARK II. Pacific Grove, California.Google Scholar
  5. 5.
    Bonnay, D., & Egré, P. (2009). Inexact knowledge with introspection. Journal of Philosophical Logic, 38(2), 179–227.CrossRefGoogle Scholar
  6. 6.
    Brogaard, B., & Salerno, J. (2009). Fitch’s Paradox of Knowability. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy.Google Scholar
  7. 7.
    Chellas, B. F. (1980). Modal logic: An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. 8.
    Danto, A. C. (1967). On knowing that we know. In A. Stroll (Ed.), Epistemology. New essays on the theory of knowledge (pp. 32–53). New York: Harper and Row.Google Scholar
  9. 9.
    Dretske, F. (1970). Epistemic operators. The Journal of Philosophy, 76(24), 1007–1023.CrossRefGoogle Scholar
  10. 10.
    Fagin, R., & Halpern, J. Y. (1988). Belief, awareness, and limited reasoning. Artificial Intelligence, 34, 39–76.CrossRefGoogle Scholar
  11. 11.
    Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge/London: MIT Press.Google Scholar
  12. 12.
    Gochet, P., & Gribomont, P. (2006). Epistemic logic. In D. M. Gabbay & J. Woods (Eds.), Handbook of the history of logic (Vol. 6, pp. 99–195). Elsevier.Google Scholar
  13. 13.
    Halpern, J. Y. (1996). Should knowledge entail belief? Journal of Philosophical Logic, 25(5), 483–494.CrossRefGoogle Scholar
  14. 14.
    Halpern, J. Y., & Moses, Y. (1985). A guide to the modal logics of knowledge and belief. In Proceedings of IJCAI- 85 (pp. 480–490). Los Angeles, CA.Google Scholar
  15. 15.
    Halpern, J. Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed system. Journal of the Association for Computing Machinery, 37(3), 549–587.CrossRefGoogle Scholar
  16. 16.
    Harman, G. (1986). Change in view. Principles of reasoning. Cambridge: MIT.Google Scholar
  17. 17.
    Hawthorne, J. (2004). Knowledge and lotteries. Oxford: Oxford University Press.Google Scholar
  18. 18.
    Hendricks, V. (2006). Mainstream and formal epistemology. Cambridge: Cambridge University Press.Google Scholar
  19. 19.
    Hilpinen, R. (1970). Knowing that one knows and the classical definition of knowledge. Synthese, 21(2), 109–132.CrossRefGoogle Scholar
  20. 20.
    Hintikka, J. (1962). Knowledge and belief. An introduction to the logic of the two notions. Ithaca: Cornell University Press.Google Scholar
  21. 21.
    Hintikka, J. (1970). Knowing that one knows, reviewed. Synthese, 21(2), 141–162.CrossRefGoogle Scholar
  22. 22.
    Lemmon, E. J. (1967). If I know, do I know that i know? In A. Stroll (Ed.), Epistemology. New essays on the theory of knowledge (pp. 54–82). New York: Harper and Row.Google Scholar
  23. 23.
    Levesque, H. J. (1984). A logic of implicit and explicit belief. National conference on artificial intelligence. Houston, Texas.Google Scholar
  24. 24.
    Lewis, D. (1969). Convention. A philosophical study. Cambridge: Harvard University Press.Google Scholar
  25. 25.
    Minsky, M. (1987). The society of mind. London: Willian Heineman.Google Scholar
  26. 26.
    Nozick, R. (1981). Philosophical explanations. Cambridge: Harvard University Press.Google Scholar
  27. 27.
    Palczewski, R. (2007). Distributed knowability and Fitch’s paradox. Studia Logica, 86(3), 455–478.CrossRefGoogle Scholar
  28. 28.
    Parikh, R. (2008). Sentences, belief and logical omniscience, or what does deduction tell us? The Review of Symbolic Logic, 1(4), 459–76.CrossRefGoogle Scholar
  29. 29.
    Plaza, J. (2007). Logics of public communications. Synthese, 158(2), 165–179.CrossRefGoogle Scholar
  30. 30.
    Restall, G. (1997). Ways things can’t be. Notre Dame Journal of Formal Logic, 38(4), 583–596.CrossRefGoogle Scholar
  31. 31.
    Roelofsen, F. (2006). Distributed knowledge. Journal of Applied Non-classical Logics, 16(2), 255–273.Google Scholar
  32. 32.
    Sequoiah-Grayson, S. (2011). Epistemic closure and commutative, nonassociative residuated structures. Synthese. doi: 10.1007/s11229-010-9834-z.Google Scholar
  33. 33.
    Stalnaker, R. (1984). Inquiry. Cambridge: MIT Press.Google Scholar
  34. 34.
    Stalnaker, R. (1991). The problem of logical omniscience, I. Synthese, 89(3), 425–440.CrossRefGoogle Scholar
  35. 35.
    Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128(1), 169–199.CrossRefGoogle Scholar
  36. 36.
    van Benthem, J. (2004). What one may come to know. Analysis, 64(282), 95–105.CrossRefGoogle Scholar
  37. 37.
    van Benthem, J. (2006). Epistemic logic and epistemology: The state of their affairs. Philosophical Studies, 128(1), 49–76.CrossRefGoogle Scholar
  38. 38.
    van Benthem, J. (2008). Logical dynamics meets logical pluralism? Australasian Journal of Logic, 6, 182–209.Google Scholar
  39. 39.
    van Benthem, J. (2009). Actions that make us know. In J. Salerno (Ed.), New essays on the knowability paradox (pp. 129–146). Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. 40.
    van der Hoek, W., van Linder, B., & Meyer, J. J .C. (1999). Group knowledge is not always distributed (neither is it always implicit). Mathematical Social Sciences, 38, 215–240.CrossRefGoogle Scholar
  41. 41.
    Van Ditmarsch, H., & Kooi, B. (2006). The secret of my success. Synthese, 151(2), 201–232.CrossRefGoogle Scholar
  42. 42.
    Van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic. Dordrecht: Springer.Google Scholar
  43. 43.
    van Ditmarsch, H., van Eijck J., & Verbrugge, R. (2009). Common knowledge and common belief. In J. van Eijck, & R. Verbrugge, (Ed.), Discourses on social software (pp. 107–32). Amsterdam: Amsterdam University Press.Google Scholar
  44. 44.
    van Eijck, J., & Wang, Y. (2008). Propositional dynamic logic as a logic of belief revision. Logic, language, information and computation (pp. 136–148).Google Scholar
  45. 45.
    Van Linder, B., van der Hoek, W., & Meyer, J. J. Ch. (1994). Communicating rational agents. In B. Nebel & L. Dreschler-Fischer (Eds.), KI-94: Advances in artificial intelligence (pp. 202–213). New York: Springer.CrossRefGoogle Scholar
  46. 46.
    Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of ScienceVrije Universiteit BrusselBrusselsBelgium
  2. 2.Science Foundation (FWO-Vlaanderen)BrusselsBelgium
  3. 3.IEGOxford UniversityOxfordUK

Personalised recommendations