Advertisement

Journal of Philosophical Logic

, Volume 41, Issue 1, pp 115–142 | Cite as

Three Approaches to Iterated Belief Contraction

  • Raghav Ramachandran
  • Abhaya C. Nayak
  • Mehmet A. Orgun
Article

Abstract

In this paper we investigate three approaches to iterated contraction, namely: the Moderate (or Priority) contraction, the Natural (or Conservative) contraction, and the Lexicographic contraction. We characterise these three contraction functions using certain, arguably plausible, properties of an iterated contraction function. While we provide the characterisation of the first two contraction operations using rationality postulates of the standard variety for iterated contraction, we found doing the same for the Lexicographic contraction more challenging. We provide its characterisation using a variation of Epistemic ranking function instead.

Keywords

Belief contraction State contraction Iterated belief contraction Degrees of belief 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. 2.
    Boutilier, C. (1993). Revision sequences and nested conditionals. In International joint conferences on artificial intelligence (pp. 519–525).Google Scholar
  3. 3.
    Chopra, S., Ghose, A., Meyer, T., & Wong, K.-S. (2008). Iterated belief change and the recovery axiom. Journal of Philosophical Logic, 37, 501–520.CrossRefGoogle Scholar
  4. 4.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artifical Intelligence, 89, 1–29.CrossRefGoogle Scholar
  5. 5.
    Dubois, D., & Prade, H. (1988). Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 4, 244–264.CrossRefGoogle Scholar
  6. 6.
    Dubois, D., & Prade, H. (1991). Epistemic entrenchment and possibilistic logic. Artifical Intelligence, 50(2), 223–239.CrossRefGoogle Scholar
  7. 7.
    Dubois, D., & Prade, H. (2004). Possibilistic logic: A retrospective and prospective view. Fuzzy Sets and Systems, 144(1), 3–23.CrossRefGoogle Scholar
  8. 8.
    Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states. Cambridge: Bradford Books, MIT Press.Google Scholar
  9. 9.
    Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  10. 10.
    Harper, W. L. (1976). Rational conceptual change. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1976, 462–494.Google Scholar
  11. 11.
    Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction. Artificial Intelligence, 172(10), 1195–1218.CrossRefGoogle Scholar
  12. 12.
    Kyburg, H. E., Jr. (2003). Are there degrees of belief? Journal of Applied Logic, 1(3–4), 139–149.CrossRefGoogle Scholar
  13. 13.
    Levi, I. (1984). Decisions and revisions. Cambridge University Press.Google Scholar
  14. 14.
    Levi, I. (1996). For the sake of the argument. Cambridge University Press.Google Scholar
  15. 15.
    Nayak, A. C. (1993). Studies in belief change. Doctoral Dissertation, Department of Philosophy, University of Rochester.Google Scholar
  16. 16.
    Nayak, A. C., Goebel, R., & Orgun, M. A. (2007). Iterated belief contraction from first principles. In International joint conferences on artificial intelligence (pp. 2568–2573).Google Scholar
  17. 17.
    Nayak, A. C., Goebel, R., Orgun, M. A., & Pham, T. (2005). Iterated belief change and the levi identity’. In J. P. Delgrande, J. Lang, H. Rott, & J.-M. Tallon (Eds.), Belief change in rational agents. Dagstuhl Seminar Proceedings (Vol. 05321). Germany: Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl.Google Scholar
  18. 18.
    Nayak, A. C., Goebel, R., Orgun, M. A., & Pham, T. (2006). Taking Levi identity seriously: A plea for iterated belief contraction. In Proc. of the 1st int. conf. on Knowledge Science, Engineering and Management (KSEM 06) (pp. 305–317). LNAI: Springer.Google Scholar
  19. 19.
    Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Oxford Science Publications, Clarendon Press.Google Scholar
  20. 20.
    Rott, H. (2006). Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In H. Lagerlund, S. Lindstrom, & R. Sliwinski (Eds.), Modality matters: Twenty-five essays in honour of Krister Segerberg (pp. 359–384). Uppsala University Press.Google Scholar
  21. 21.
    Rott, H. (2009). Degrees all the way down: Beliefs, non-beliefs and disbeliefs. In F. Huber, & C. Schmidt-Petri (Eds.), Degrees of belief (pp. 301–339).Google Scholar
  22. 22.
    Shackle, G. L. S. (1952). Expectation in economics (2nd ed.). Cambridge University Press.Google Scholar
  23. 23.
    Spohn, W. (1988). Ordinal conditional functions. A dynamic theory of epistemic states. In: W. L. Harper, & B. Skirms (Eds.), Causation in decisions, belief change and statistics (Vol. II, pp. 105–134). Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raghav Ramachandran
    • 1
  • Abhaya C. Nayak
    • 1
  • Mehmet A. Orgun
    • 1
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations