Advertisement

Conditionals Right and Left: Probabilities for the Whole Family

  • Stefan Kaufmann
Article

Abstract

The fact that the standard probabilistic calculus does not define probabilities for sentences with embedded conditionals is a fundamental problem for the probabilistic theory of conditionals. Several authors have explored ways to assign probabilities to such sentences, but those proposals have come under criticism for making counterintuitive predictions. This paper examines the source of the problematic predictions and proposes an amendment which corrects them in a principled way. The account brings intuitions about counterfactual conditionals to bear on the interpretation of indicatives and relies on the notion of causal (in)dependence.

Keywords

Standard probabilistic calculus Embedded conditionals Probabilistic theory of conditionals Causal independence 

References

  1. 1.
    Adams, E. (1965). The logic of conditionals. Inquiry, 8, 166–197.CrossRefGoogle Scholar
  2. 2.
    Adams, E. (1970). Subjunctive and indicative conditionals. Foundations of Language, 6, 89–94.Google Scholar
  3. 3.
    Adams, E. (1975). The logic of conditionals. Dordrecht: Reidel.Google Scholar
  4. 4.
    Adams, E. (1998). A primer of probability logic. Stanford: CSLI.Google Scholar
  5. 5.
    Appiah, A. (1984). Jackson on the material conditional. Australasian Journal of Philosophy, 62(1), 77–81.CrossRefGoogle Scholar
  6. 6.
    Appiah, A. (1985). Assertion and conditionals. Cambridge: Cambridge University Press.Google Scholar
  7. 7.
    Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter,D. J. (1999). Probabilistic networks and expert systems. Berlin: Springer.Google Scholar
  8. 8.
    Edgington, D. (1991). The mystery of the missing matter of fact. In Proceedings of the Aristotelian society (pp. 185–209). London: The Aristotelian Society.Google Scholar
  9. 9.
    Edgington, D. (1995). On conditionals. Mind, 104(414), 235–329.CrossRefGoogle Scholar
  10. 10.
    Ellis, B. (1984). Two theories of indicative conditionals. Australasian Journal of Philosophy, 62(1), 50–66.CrossRefGoogle Scholar
  11. 11.
    Gibbard, A. (1981a). Indicative conditionals and conditional probability: Reply to Pollock. In W. L. Harper, R. Stalnaker, & G. Pearce (Eds.), Ifs: Conditionals, belief, decision, chance, and time (pp. 253–255). Dordrecht: Reidel.Google Scholar
  12. 12.
    Gibbard, A. (1981b). Two recent theories of conditionals. In W. L. Harper, R. Stalnaker, & G. Pearce (Eds.), Ifs: Conditionals, belief, decision, chance, and time (pp. 211–247). Dordrecht: Reidel.Google Scholar
  13. 13.
    Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal models in psychology. Cambridge: MIT.Google Scholar
  14. 14.
    Hájek, A., & Hall, N. (1994). The hypothesis of the conditional construal of conditional probability. In E. Eells, & B. Skyrms (Eds.), Probabilities and conditionals: belief revision and rational decision (pp. 75–110). Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge: MIT.Google Scholar
  16. 16.
    Jackson, F. (1979). On assertion and indicative conditionals. Philosophical Review, 88, 565–589.CrossRefGoogle Scholar
  17. 17.
    Jackson, F. (1984). Two theories of indicative conditionals: Reply to Brian Ellis. Australasian Journal of Philosophy, 62(1), 67–76.CrossRefGoogle Scholar
  18. 18.
    Jackson, F. (1987). Conditionals. Oxford: Basil Blackwell.Google Scholar
  19. 19.
    Jeffrey, R. C. (1964). If. Journal of Philosophy, 61, 702–703.Google Scholar
  20. 20.
    Jeffrey, R. C. (1991). Matter-of-fact conditionals. In The Symposia Read at the Joint Session of the Aristotelian Society and the Mind Association at the University of Durham (Suppl. Vol. 65, pp. 161–183). London: The Aristotelian Society.Google Scholar
  21. 21.
    Kaufmann, S. (2004). Conditioning against the grain: Abduction and indicative conditionals. Journal of Philosophical Logic, 33(6), 583–606.CrossRefGoogle Scholar
  22. 22.
    Kaufmann, S. (2005). Conditional predictions: A probabilistic account. Linguistics and Philosophy, 28(2), 181–231.CrossRefGoogle Scholar
  23. 23.
    Kaufmann, S., Winston, E., & Zutty, D. (2004). Local and global interpretations of conditionals. In Presented at the Eighth Symposium on Logic and Language (LoLa8). Debrecen, Hungary.Google Scholar
  24. 24.
    Kyburg, H. E., man Teng, C., Wheeler, G. (2005). Conditionals and consequences. In Proceedings of the Fourth International Workshop on Computational Models of Scientific Reasoning and Applications (CMSRA IV). Lisbon: Universidade Nova de Lisboa.Google Scholar
  25. 25.
    Lance, M. (1991). Probabilistic dependence among conditionals. Philosophical Review, 100, 269–276.CrossRefGoogle Scholar
  26. 26.
    Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. Philosophical Review, 85, 297–315.CrossRefGoogle Scholar
  27. 27.
    Lewis, D. (1979). Counterfactual dependence and time’s arrow. Noûs, 13, 455–476.CrossRefGoogle Scholar
  28. 28.
    Lewis, D. (1986). Postscript to “Probabilities of conditionals and conditional probabilities.” In Philosophical Papers (Vol. 2, pp. 152–156). Oxford University Press.Google Scholar
  29. 29.
    McDermott, M. (1996). On the truth conditions of certain ‘if’-sentences. Philosophical Review, 105, 1–37.CrossRefGoogle Scholar
  30. 30.
    McGee, V. (1989). Conditional probabilities and compounds of conditionals. The Philosophical Review, 98(4), 485–541.CrossRefGoogle Scholar
  31. 31.
    McGee, V. (2000). To tell the truth about conditionals. Analysis, 60, 107–111.CrossRefGoogle Scholar
  32. 32.
    Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.Google Scholar
  33. 33.
    Pollock, J. L. (1981). Indicative conditionals and conditional probability. In W. L. Harper, R. Stalnaker, & G. Pearce (Eds.), Ifs: Conditionals, belief, decision, chance, and time (pp. 249–252). Dordrecht: Reidel.Google Scholar
  34. 34.
    Ramsey, F. P. (1929). General propositions and causality. In D. H. Mellor (Ed.), Philosophical papers: F. P. Ramsey. Cambridge: Cambridge University Press (pp. 145–163).Google Scholar
  35. 35.
    Russell, B. (1903). Principles of mathematics. Cambridge: Cambridge University Press.Google Scholar
  36. 36.
    Sanford, D. (1989). If P, then Q: Conditionals and the foundations of reasoning. London: Routledge.Google Scholar
  37. 37.
    Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. Cambridge: MIT.Google Scholar
  38. 38.
    Spohn, W. (2001). Bayesian nets are all there is to causal dependence. In M. C. Galavotti, P. Suppes, & D. Costantini (Eds.), Stochastic causality (pp. 157–172). Stanford: CSLI.Google Scholar
  39. 39.
    Stalnaker, R. (1970). Probability and conditionals. Philosophy of Science, 37, 64–80.CrossRefGoogle Scholar
  40. 40.
    Stalnaker, R., & Jeffrey, R. (1994). Conditionals as random variables. In E. Eells, & B. Skyrms (Eds.), Probabilities and conditionals: Belief revision and rational decision (pp. 31–46). Cambridge: Cambridge University Press.Google Scholar
  41. 41.
    van Fraassen, B. C. (1976). Probabilities of conditionals. In W. L. Harper, R. Stalnaker, & G. Pearce (Eds.), Foundations of probability theory, statistical inference, and statistical theories of science. The University of Western Ontario series in philosophy of science (Vol. 1, pp. 261–308). Dordrecht: D. Reidel.Google Scholar
  42. 42.
    Woods, M. (1997). Conditionals. Clarendon: Clarendon.Google Scholar
  43. 43.
    Woodward, J. (2001). Probabilistic causality, direct causes, and counterfactual dependence. In M. C. Galavotti, P. Suppes, & D. Costantini (Eds.), Stochastic causality (pp. 39–63). Stanford: CSLI.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of LinguisticsNorthwestern UniversityEvanstonUSA

Personalised recommendations