Advertisement

Journal of Philosophical Logic

, Volume 36, Issue 1, pp 97–121 | Cite as

Ceteris Paribus Conditionals and Comparative Normalcy

  • Martin Smith
Article

Abstract

Our understanding of subjunctive conditionals has been greatly enhanced through the use of possible world semantics and, more precisely, by the idea that they involve variably strict quantification over possible worlds. I propose to extend this treatment to ceteris paribus conditionals – that is, conditionals that incorporate a ceteris paribus or ‘other things being equal’ clause. Although such conditionals are commonly invoked in scientific theorising, they traditionally arouse suspicion and apprehensiveness amongst philosophers. By treating ceteris paribus conditionals as a species of variably strict conditional I hope to shed new light upon their content and their logic.

Key words

ceteris paribus conditional comparative normalcy possible world semantics subjunctive conditional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, W. and Fenster, S.: 1969, Mechanics, Holt, Rinehart and Winston, New York.Google Scholar
  2. Boutilier, C.: 1994, Conditional logics of normality: A modal approach, Artificial Intelligence 68, 87–154.CrossRefGoogle Scholar
  3. Boutilier, C. and Becher, V.: 1995, Abduction as belief revision, Artificial Intelligence 77, 43–94.CrossRefGoogle Scholar
  4. Bowie, G.: 1979, The similarity approach to counterfactuals: Some problems, Noûs 13, 477–498.CrossRefGoogle Scholar
  5. Cartwright, N.: 1983, How the Laws of Physics Lie, Clarendon, Oxford.Google Scholar
  6. Cartwright, N.: 1999, The Dappled World, Cambridge University Press, Cambridge.Google Scholar
  7. Delgrande, J.: 1987, A first order logic for prototypical properties, Artificial Intelligence 33, 105–130.CrossRefGoogle Scholar
  8. Earman, J. and Roberts, J.: 1999, “Ceteris paribus” there is no problem of provisos, Synthese 118, 439–478.CrossRefGoogle Scholar
  9. Earman, J., Roberts, J. and Smith, S.: 2002, Ceteris paribus lost, Erkenntnis 57, 281–301.CrossRefGoogle Scholar
  10. Gundersen, L.: 2004, Outline of a new semantics for counterfactuals, Pacific Philosophical Quarterly 85, 1–20.CrossRefGoogle Scholar
  11. Halpern, J. and Rabin, M.: 1987, A logic to reason about likelihood, Artificial Intelligence 32, 379–405.CrossRefGoogle Scholar
  12. Hansson, B.: 1969, An analysis of some deontic logics, Noûs 3, 373–398.CrossRefGoogle Scholar
  13. Hempel, C.: 1988, Provisos: A problem concerning the inferential function of scientific theories, Erkenntnis 28, 147–164.CrossRefGoogle Scholar
  14. Krabbe, E.: 1978, Note on a completeness theorem in the theory of counterfactuals, Journal of Philosophical Logic 7, 91–93.CrossRefGoogle Scholar
  15. Kripke, S.: 1980, Naming and Necessity, Basil Blackwell, Oxford.Google Scholar
  16. Laymon, R.: 1985, Idealization and the testing of theories by experimentation, in P. Achinstein and O. Hannaway (eds.), Observation, Experiment and Hypothesis in Modern Physical Science, MIT, Cambridge, Massachusetts.Google Scholar
  17. Laymon, R.: 1989, Cartwright and the lying laws of physics, Journal of Philosophy 86, 353–372.CrossRefGoogle Scholar
  18. Lemmon, E.: 1977, An Introduction to Modal Logic, Blackwell, Oxford.Google Scholar
  19. Lewis, D.: 1971, Completeness and decidability of three logics of counterfactual conditionals, Theoria 37, 74–85.CrossRefGoogle Scholar
  20. Lewis, D.: 1973a, Counterfactuals and comparative possibility, Journal of Philosophical Logic 2, 418–444.CrossRefGoogle Scholar
  21. Lewis, D.: 1973b, Counterfactuals, Blackwell, Oxford.Google Scholar
  22. Lewis, D.: 1974, Semantic analyses for dyadic deontic logic, in S. Stenlund (ed.), Logical Theory and Semantical Analysis, Reidel, Dordrecht.Google Scholar
  23. Lewis, D.: 1979, Counterfactual dependence and time’s arrow, Noûs 13, 455–476.CrossRefGoogle Scholar
  24. Makinson, D.: 1966, On some completeness theorems in modal logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12, 379–384.Google Scholar
  25. McCarthy, J.: 1986, Application of circumscription to formalizing common sense knowledge, Artificial Intelligence 28, 89–116.CrossRefGoogle Scholar
  26. Menzies, P.: 2004, Difference making in context, in J. Collins (ed.), Causation and Counterfactuals, MIT, Cambridge, Massachusetts.Google Scholar
  27. Millikan, R.: 1984, Language, Thought and Other Biological Categories, MIT, Cambridge, Massachusetts.Google Scholar
  28. Nozick, R.: 1981, Philosophical Explanations, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  29. Pietroski, P. and Rey, G.: 1995, When other things aren’t equal: Saving “ceteris paribus” laws from vacuity, British Journal for the Philosophy of Science 46, 81–110.Google Scholar
  30. Shaffer, M.: 2001, Bayesian confirmation theories that incorporate idealizations, Philosophy of Science 68, 36–52.CrossRefGoogle Scholar
  31. Shiffer, S.: 1987, Remnants of Meaning, MIT, Cambridge, Massachusetts.Google Scholar
  32. Shiffer, S.: 1991, Ceteris paribus laws, Mind 100, 1–18.Google Scholar
  33. Sober, E.: 1984, The Nature of Selection, MIT, Cambridge, Massachusetts.Google Scholar
  34. Van Fraassen, B.: 1972, The logic of conditional obligation, Journal of Philosophical Logic 1, 417–438.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of YorkHeslingtonUK

Personalised recommendations