Skip to main content
Log in

Using Chou’s Five-steps Rule to Classify and Predict Glutathione S-transferases with Different Machine Learning Algorithms and Pseudo Amino Acid Composition

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The Glutathione S-Transferases (GSTs) are detoxification enzymes which exist in variety of living organisms such as bacteria, fungi, plants and animals. These multifunctional enzymes play important roles in the biosynthesis of steroids, prostaglandins, apoptosis regulation, and stress signaling. In this study, we designed a method to independently predict the structures of animal, fungal and plant GSTs using Chou’s pseudo-amino acid composition concept. Support vector machine (SVM), Random Forests (RF), Covariance Discrimination (CD) and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) were used as powerful machine learnings algorithms. Based on our results, Random Forests demonstrated the best prediction for animal GSTs with 0.9339 accuracy and SVM showed the best results for fungal and plant GSTs with 0.8982 and 0.9655 accuracy, respectively. Our study provided an effective prediction for GSTs based on the concept of PseAAC and four different machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7:1–15

    CAS  Google Scholar 

  • Behbahani M, Nosrati M, Moradi M, Mohabatkar H (2019) Using Chou’s general pseudo amino acid composition to classify laccases from bacterial and fungal sources via Chou’s five-step rule. Appl Biochem Biotechnol 190:1035–1048

    PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Machine Learn 45:5–32

    Google Scholar 

  • Cao D-S, Xu Q-S, Liang Y-Z (2013) propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962

    CAS  PubMed  Google Scholar 

  • Chakrabarti S, Ester M, Fayyad U, Gehrke J, Han J, Morishita S et al (2006) Data mining curriculum: A proposal (Version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee

  • Chen H, Kihara D (2011) Effect of using suboptimal alignments in template-based protein structure prediction. Proteins Struct Funct Bioinf 79:315–334

    CAS  Google Scholar 

  • Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein Pept Lett 16:27–31

    PubMed  Google Scholar 

  • Chen W, Lei T-Y, Jin D-C, Lin H, Chou K-C (2014) PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal Biochem 456:53–60

    CAS  PubMed  Google Scholar 

  • Chen W, Lin H, Chou K-C (2015) Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst 11:2620–2634

    CAS  PubMed  Google Scholar 

  • Chen W, Tang H, Ye J, Lin H, Chou K-C (2016) iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 5:e332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ (2020) Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 64:101–109

    CAS  PubMed  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct Funct Bioinf 43:246–255

    CAS  Google Scholar 

  • Chou K-C (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  PubMed  Google Scholar 

  • Chou K-C (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics 6:262–274

    CAS  Google Scholar 

  • Chou K-C (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:236–247

    CAS  PubMed  Google Scholar 

  • Chou K-C (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234

    CAS  PubMed  Google Scholar 

  • Chou K-C (2017) An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Topics Med Chem 17:2337–2358

    CAS  Google Scholar 

  • Chou K-C (2019) Advances in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr Med Chem 26:4918–4943

    CAS  Google Scholar 

  • Chou K-C (2020) Proposing 5-steps rule is a notable milestone for studying molecular biology. Nat Sci 12:74

    Google Scholar 

  • Chou KC, Cai YD (2003) Predicting protein quaternary structure by pseudo amino acid composition. Proteins Struct Funct Bioinf 53:282–289

    CAS  Google Scholar 

  • Chou K-C, Cheng X, Xiao X (2019) pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med Chem 15:472–485

    CAS  PubMed  Google Scholar 

  • Dasari S, Ganjayi MS, Yellanurkonda P, Basha S, Meriga B (2018) Role of glutathione S-transferases in detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene. Chemico-Biol Interact 294:81–90

    CAS  Google Scholar 

  • Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A (2015) Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳ s general PseAAC. J Theor Biol 364:284–294

    CAS  PubMed  Google Scholar 

  • Di Matteo A, Federici L, Masulli M, Carletti E, Santorelli D, Cassidy J et al (2019) Structural characterization of the Xi Class glutathione transferase from the Haloalkaliphilic Archaeon Natrialba magadii. Front Microbiol 10:9

    PubMed  PubMed Central  Google Scholar 

  • Du P, Wang X, Xu C, Gao Y (2012) PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Anal Biochem 425:117–119

    CAS  PubMed  Google Scholar 

  • Du P, Gu S, Jiao Y (2014) PseAAC-General: fast building various modes of general form of Chou’s pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci 15:3495–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 263:203–209

    CAS  PubMed  Google Scholar 

  • Galetsi P, Katsaliaki K, Kumar S (2020) Big data analytics in health sector: theoretical framework, techniques and prospects. Int J Inf Manag 50:206–216

    Google Scholar 

  • Ghosh C, Saha S, Saha S, Ghosh N, Singha K, Banerjee A et al (2020) Machine Learning Based Supplementary Prediction System Using K Nearest Neighbour Algorithm. Available at SSRN 3517197

  • Gupta CLP, Bihari A, Tripathi S (2019) Protein classification using machine learning and statistical techniques: a comparative analysis. arXiv preprint arXiv:190106152

  • Haghighi O, Davaeifar S, Zahiri HS, Maleki H, Noghabi KA (2019) Homology Modeling and Molecular Docking Studies of Glutamate Dehydrogenase (GDH) from Cyanobacterium Synechocystis sp. PCC 6803. Int J Pept Res Ther 26:783–793

    Google Scholar 

  • Kam HT (1995) Random decision forest. In: Proceedings of the 3rd international conference on document analysis and recognition, Montreal, Canada, 14–16 August 1995. IEEE, p 278282

  • Kato T, Miyakawa H, Ishibashi M (2004) Frequency and significance of anti-glutathione S-transferase autoantibody (anti-GST A1-1) in autoimmune hepatitis. J Autoimmun 22:211–216

    CAS  PubMed  Google Scholar 

  • Kilty C, Doyle S, Hassett B, Manning F (1998) Glutathione S-transferases as biomarkers of organ damage: applications of rodent and canine GST enzyme immunoassays. Chemico-Biol Interact 111:123–135

    Google Scholar 

  • Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res/Rev Mutat Res 463:247–283

    CAS  Google Scholar 

  • Lee S, Lee B, Kim D (2006) Prediction of protein secondary structure content using amino acid composition and evolutionary information. Proteins Struct Funct Bioinf 62:1107–1114

    CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    CAS  PubMed  Google Scholar 

  • Li Y, Wu F-X, Ngom A (2018) A review on machine learning principles for multi-view biological data integration. Brief Bioinform 19:325–340

    PubMed  Google Scholar 

  • Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    CAS  PubMed  Google Scholar 

  • Lin W, Xiao X, Qiu W, Chou K-C (2020) Use Chou’s 5-steps rule to predict remote homology proteins by merging grey incidence analysis and domain similarity analysis. Nat Sci 12:181

    Google Scholar 

  • Liu B, Liu F, Wang X, Chen J, Fang L, Chou K-C (2015) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Fang L, Long R, Lan X, Chou K-C (2016) iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 32:362–369

    CAS  PubMed  Google Scholar 

  • Liu B, Wu H, Chou K-C (2017) Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 9:67

    CAS  Google Scholar 

  • Liu B, Yang F, Huang D-S, Chou K-C (2018) iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 34:33–40

    CAS  PubMed  Google Scholar 

  • Mishra NK, Kumar M, Raghava G (2007) Support vector machine based prediction of glutathione S-transferase proteins. Protein Pept Lett 14:575–580

    CAS  PubMed  Google Scholar 

  • Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept Lett 17:1207–1214

    CAS  PubMed  Google Scholar 

  • Mohabatkar H, Beigi MM, Esmaeili A (2011) Prediction of GABAA receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. J Theor Biol 281:18–23

    CAS  PubMed  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26:217–222

    Google Scholar 

  • Raza K (2012) Application of data mining in bioinformatics. arXiv preprint arXiv:12051125

  • Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinform 7:382

    Google Scholar 

  • Schultz IR, Sylvester SR (2001) Stereospecific toxicokinetics of bromochloro-and chlorofluoroacetate: Effect of GST-ζ depletion. Toxicol Appl Pharmcol 175:104–113

    CAS  Google Scholar 

  • Schölkopf B, Smola AJ, Bach F (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, Cambridge

    Google Scholar 

  • Shen H, Chou K-C (2005) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334:288–292

    CAS  PubMed  Google Scholar 

  • Shen H-B, Chou K-C (2008) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    CAS  PubMed  Google Scholar 

  • Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 2:2951–2959

    Google Scholar 

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Google Scholar 

  • Sylvestre-Gonon E, Law S, Schwartz M, Robe K, Keech O, Didierjean C et al (2019) Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci 10:608

    PubMed  PubMed Central  Google Scholar 

  • Tew KD, Ronai ZE (1999) GST function in drug and stress response. Drug Resist Updates 2:143–147

    CAS  Google Scholar 

  • Tian B, Wu X, Chen C, Qiu W, Ma Q, Yu B (2019) Predicting protein–protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach. J Theor Biol 462:329–346

    CAS  PubMed  Google Scholar 

  • Xia J-F, Han K, Huang D-S (2010) Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept Lett 17:137–145

    CAS  PubMed  Google Scholar 

  • Xiao X, Cheng X, Chen G, Mao Q, Chou K-C (2019) pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by Chou’s general PseAAC and IHTS treatment to balance training dataset. Med Chem 15:496–509

    CAS  PubMed  Google Scholar 

  • Yadav SK, Tiwari AK (2015) Classification of enzymes using machine learning based approaches: a review. Machine Learn Appl 2:30–49

    Google Scholar 

  • Yu B, Li S, Qiu W-Y, Chen C, Chen R-X, Wang L et al (2017) Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget 8:107640

    PubMed  PubMed Central  Google Scholar 

  • Zou Q, Lin G, Jiang X, Liu X, Zeng X (2020) Sequence clustering in bioinformatics: an empirical study. Brief Bioinform 21:1–10

    CAS  Google Scholar 

Download references

Acknowledgements

Support of this study by the University of Isfahan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Mohabatkar.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Informed Consent

There was no human participant and consent was not required.

Research involving Human and/or Animals Participants

No human or animal was participated in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohabatkar, H., Ebrahimi, S. & Moradi, M. Using Chou’s Five-steps Rule to Classify and Predict Glutathione S-transferases with Different Machine Learning Algorithms and Pseudo Amino Acid Composition. Int J Pept Res Ther 27, 309–316 (2021). https://doi.org/10.1007/s10989-020-10087-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10087-7

Keywords

Navigation