Using Chou’s Five-steps Rule to Classify and Predict Glutathione S-transferases with Different Machine Learning Algorithms and Pseudo Amino Acid Composition

Abstract

The Glutathione S-Transferases (GSTs) are detoxification enzymes which exist in variety of living organisms such as bacteria, fungi, plants and animals. These multifunctional enzymes play important roles in the biosynthesis of steroids, prostaglandins, apoptosis regulation, and stress signaling. In this study, we designed a method to independently predict the structures of animal, fungal and plant GSTs using Chou’s pseudo-amino acid composition concept. Support vector machine (SVM), Random Forests (RF), Covariance Discrimination (CD) and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) were used as powerful machine learnings algorithms. Based on our results, Random Forests demonstrated the best prediction for animal GSTs with 0.9339 accuracy and SVM showed the best results for fungal and plant GSTs with 0.8982 and 0.9655 accuracy, respectively. Our study provided an effective prediction for GSTs based on the concept of PseAAC and four different machine learning algorithms.

This is a preview of subscription content, access via your institution.

References

  1. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7:1–15

    CAS  Google Scholar 

  2. Behbahani M, Nosrati M, Moradi M, Mohabatkar H (2019) Using Chou’s general pseudo amino acid composition to classify laccases from bacterial and fungal sources via Chou’s five-step rule. Appl Biochem Biotechnol 190:1035–1048

    PubMed  PubMed Central  Google Scholar 

  3. Breiman L (2001) Random forests. Machine Learn 45:5–32

    Google Scholar 

  4. Cao D-S, Xu Q-S, Liang Y-Z (2013) propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962

    CAS  Google Scholar 

  5. Chakrabarti S, Ester M, Fayyad U, Gehrke J, Han J, Morishita S et al (2006) Data mining curriculum: A proposal (Version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee

  6. Chen H, Kihara D (2011) Effect of using suboptimal alignments in template-based protein structure prediction. Proteins Struct Funct Bioinf 79:315–334

    CAS  Google Scholar 

  7. Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein Pept Lett 16:27–31

    Google Scholar 

  8. Chen W, Lei T-Y, Jin D-C, Lin H, Chou K-C (2014) PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal Biochem 456:53–60

    CAS  Google Scholar 

  9. Chen W, Lin H, Chou K-C (2015) Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst 11:2620–2634

    CAS  Google Scholar 

  10. Chen W, Tang H, Ye J, Lin H, Chou K-C (2016) iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 5:e332

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ (2020) Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 64:101–109

    CAS  Google Scholar 

  12. Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct Funct Bioinf 43:246–255

    CAS  Google Scholar 

  13. Chou K-C (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  Google Scholar 

  14. Chou K-C (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics 6:262–274

    CAS  Google Scholar 

  15. Chou K-C (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:236–247

    CAS  Google Scholar 

  16. Chou K-C (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234

    CAS  Google Scholar 

  17. Chou K-C (2017) An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Topics Med Chem 17:2337–2358

    CAS  Google Scholar 

  18. Chou K-C (2019) Advances in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr Med Chem 26:4918–4943

    CAS  Google Scholar 

  19. Chou K-C (2020) Proposing 5-steps rule is a notable milestone for studying molecular biology. Nat Sci 12:74

    Google Scholar 

  20. Chou KC, Cai YD (2003) Predicting protein quaternary structure by pseudo amino acid composition. Proteins Struct Funct Bioinf 53:282–289

    CAS  Google Scholar 

  21. Chou K-C, Cheng X, Xiao X (2019) pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med Chem 15:472–485

    CAS  Google Scholar 

  22. Dasari S, Ganjayi MS, Yellanurkonda P, Basha S, Meriga B (2018) Role of glutathione S-transferases in detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene. Chemico-Biol Interact 294:81–90

    CAS  Google Scholar 

  23. Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A (2015) Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳ s general PseAAC. J Theor Biol 364:284–294

    CAS  Google Scholar 

  24. Di Matteo A, Federici L, Masulli M, Carletti E, Santorelli D, Cassidy J et al (2019) Structural characterization of the Xi Class glutathione transferase from the Haloalkaliphilic Archaeon Natrialba magadii. Front Microbiol 10:9

    PubMed  PubMed Central  Google Scholar 

  25. Du P, Wang X, Xu C, Gao Y (2012) PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Anal Biochem 425:117–119

    CAS  Google Scholar 

  26. Du P, Gu S, Jiao Y (2014) PseAAC-General: fast building various modes of general form of Chou’s pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci 15:3495–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 263:203–209

    CAS  Google Scholar 

  28. Galetsi P, Katsaliaki K, Kumar S (2020) Big data analytics in health sector: theoretical framework, techniques and prospects. Int J Inf Manag 50:206–216

    Google Scholar 

  29. Ghosh C, Saha S, Saha S, Ghosh N, Singha K, Banerjee A et al (2020) Machine Learning Based Supplementary Prediction System Using K Nearest Neighbour Algorithm. Available at SSRN 3517197

  30. Gupta CLP, Bihari A, Tripathi S (2019) Protein classification using machine learning and statistical techniques: a comparative analysis. arXiv preprint arXiv:190106152

  31. Haghighi O, Davaeifar S, Zahiri HS, Maleki H, Noghabi KA (2019) Homology Modeling and Molecular Docking Studies of Glutamate Dehydrogenase (GDH) from Cyanobacterium Synechocystis sp. PCC 6803. Int J Pept Res Ther 26:783–793

    Google Scholar 

  32. Kam HT (1995) Random decision forest. In: Proceedings of the 3rd international conference on document analysis and recognition, Montreal, Canada, 14–16 August 1995. IEEE, p 278282

  33. Kato T, Miyakawa H, Ishibashi M (2004) Frequency and significance of anti-glutathione S-transferase autoantibody (anti-GST A1-1) in autoimmune hepatitis. J Autoimmun 22:211–216

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kilty C, Doyle S, Hassett B, Manning F (1998) Glutathione S-transferases as biomarkers of organ damage: applications of rodent and canine GST enzyme immunoassays. Chemico-Biol Interact 111:123–135

    Google Scholar 

  35. Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res/Rev Mutat Res 463:247–283

    CAS  Google Scholar 

  36. Lee S, Lee B, Kim D (2006) Prediction of protein secondary structure content using amino acid composition and evolutionary information. Proteins Struct Funct Bioinf 62:1107–1114

    CAS  Google Scholar 

  37. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    CAS  Google Scholar 

  38. Li Y, Wu F-X, Ngom A (2018) A review on machine learning principles for multi-view biological data integration. Brief Bioinform 19:325–340

    PubMed  PubMed Central  Google Scholar 

  39. Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin W, Xiao X, Qiu W, Chou K-C (2020) Use Chou’s 5-steps rule to predict remote homology proteins by merging grey incidence analysis and domain similarity analysis. Nat Sci 12:181

    Google Scholar 

  41. Liu B, Liu F, Wang X, Chen J, Fang L, Chou K-C (2015) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu B, Fang L, Long R, Lan X, Chou K-C (2016) iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 32:362–369

    CAS  Google Scholar 

  43. Liu B, Wu H, Chou K-C (2017) Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 9:67

    CAS  Google Scholar 

  44. Liu B, Yang F, Huang D-S, Chou K-C (2018) iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 34:33–40

    CAS  Google Scholar 

  45. Mishra NK, Kumar M, Raghava G (2007) Support vector machine based prediction of glutathione S-transferase proteins. Protein Pept Lett 14:575–580

    CAS  Google Scholar 

  46. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept Lett 17:1207–1214

    CAS  Google Scholar 

  47. Mohabatkar H, Beigi MM, Esmaeili A (2011) Prediction of GABAA receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. J Theor Biol 281:18–23

    CAS  Google Scholar 

  48. Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26:217–222

    Google Scholar 

  49. Raza K (2012) Application of data mining in bioinformatics. arXiv preprint arXiv:12051125

  50. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinform 7:382

    Google Scholar 

  51. Schultz IR, Sylvester SR (2001) Stereospecific toxicokinetics of bromochloro-and chlorofluoroacetate: Effect of GST-ζ depletion. Toxicol Appl Pharmcol 175:104–113

    CAS  Google Scholar 

  52. Schölkopf B, Smola AJ, Bach F (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, Cambridge

    Google Scholar 

  53. Shen H, Chou K-C (2005) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334:288–292

    CAS  Google Scholar 

  54. Shen H-B, Chou K-C (2008) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    CAS  Google Scholar 

  55. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 2:2951–2959

    Google Scholar 

  56. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Google Scholar 

  57. Sylvestre-Gonon E, Law S, Schwartz M, Robe K, Keech O, Didierjean C et al (2019) Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci 10:608

    PubMed  PubMed Central  Google Scholar 

  58. Tew KD, Ronai ZE (1999) GST function in drug and stress response. Drug Resist Updates 2:143–147

    CAS  Google Scholar 

  59. Tian B, Wu X, Chen C, Qiu W, Ma Q, Yu B (2019) Predicting protein–protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach. J Theor Biol 462:329–346

    CAS  Google Scholar 

  60. Xia J-F, Han K, Huang D-S (2010) Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept Lett 17:137–145

    CAS  Google Scholar 

  61. Xiao X, Cheng X, Chen G, Mao Q, Chou K-C (2019) pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by Chou’s general PseAAC and IHTS treatment to balance training dataset. Med Chem 15:496–509

    CAS  Google Scholar 

  62. Yadav SK, Tiwari AK (2015) Classification of enzymes using machine learning based approaches: a review. Machine Learn Appl 2:30–49

    Google Scholar 

  63. Yu B, Li S, Qiu W-Y, Chen C, Chen R-X, Wang L et al (2017) Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget 8:107640

    PubMed  PubMed Central  Google Scholar 

  64. Zou Q, Lin G, Jiang X, Liu X, Zeng X (2020) Sequence clustering in bioinformatics: an empirical study. Brief Bioinform 21:1–10

    CAS  Google Scholar 

Download references

Acknowledgements

Support of this study by the University of Isfahan is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan Mohabatkar.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Informed Consent

There was no human participant and consent was not required.

Research involving Human and/or Animals Participants

No human or animal was participated in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohabatkar, H., Ebrahimi, S. & Moradi, M. Using Chou’s Five-steps Rule to Classify and Predict Glutathione S-transferases with Different Machine Learning Algorithms and Pseudo Amino Acid Composition. Int J Pept Res Ther 27, 309–316 (2021). https://doi.org/10.1007/s10989-020-10087-7

Download citation

Keywords

  • Glutathione S-Transferases
  • Chou’s PseAAC
  • Machine learning