Investigation of Atrial Natriuretic Peptide as A Competitive Inhibitory Candidate Against Wnt/β-Catenin Signalling: A Molecular Dynamics Approach

Abstract

Wnt/β-catenin signaling, a highly evolutionary conserved pathway, is abnormally regulated in many human cancers. This pathway is one of the proposed mechanisms of atrial natriuretic peptide (ANP) anti-cancer effect. ANP which at first reported as a cardio hormone, inhibits proliferation of different cancer cell lines and tumor growth in vitro and in vivo respectively. Previous studies have shown a possibility of direct interaction between ANP and Frizzled (FZD), the main extracellular receptor of the pathway, and so a competition between ANP and Wnt for binding to this receptor. Here, using a molecular dynamics approach, we investigated this hypothesis validity and also the probable mechanism involved. We found three overlapping binding regions between ANP and Wnt3a carboxyl-terminal domain (CTD) on FZD7, but there is not any overlap with the large amino-terminal domain (NTD) of this protein. Based on the results derived from our study and the previous report on the intrinsic inhibitory potential of NTD subdomain against Wnt signalling and the conserved structure of Wnt-FZD complex architecture, we concluded that ANP is able to compete with Wnt CTD for binding to FZD that it can lead to incompletion of complex formation procedure between Wnt3a and FZD7. Finally, we introduce this peptide as a potential scaffold to design selective inhibitors against FZD-dependant cancers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

ANP:

Atrial natriuretic peptide

FZD:

Frizzled

CTD:

Carboxyl-terminal domain

NTD:

Amino-terminal domain

CRD:

Cysteine rich domain

CAPRI:

Critical assessment of predicted interaction

PME:

Particle-mesh Ewald

RMSD:

Root means square deviation

RMSF:

Root means square fluctuation

ASA:

Accessible surface area

References

  1. Abraham MJ et al (2019) GROMACS User Manual version 2019

  2. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  3. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11

    CAS  Article  Google Scholar 

  4. Arend RC et al (2013) The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol 131(3):772–779

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Asad M et al (2014) FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis 5(7):e1346

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brenner BM et al (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70(3):665–699

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Comeau SR et al (2004) ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res 32(suppl_2):W96–W99

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Consortium U (2009) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38(suppl_1):D142–D148

    Google Scholar 

  11. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography 40(1):82–92

  12. Dijksterhuis J, Petersen J, Schulte G (2014) WNT/F rizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 171(5):1195–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods in enzymology. Elsevier, Amsterdam, pp 461–491

    Google Scholar 

  15. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gurney A et al (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci 109(29):11717–11722

    CAS  PubMed  PubMed Central  Google Scholar 

  17. He X-L, Dukkipati A, Garcia KC (2006) Structural determinants of natriuretic peptide receptor specificity and degeneracy. J Mol Biol 361(4):698–714

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirai H et al (2019) Crystal structure of a mammalian Wnt–frizzled complex. Nat Struct Mol Biol 26(5):372

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115(21):3977–3978

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Janda CY et al (2012) Structural basis of Wnt recognition by Frizzled. Science 337(6090):59–64

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Janin J et al (2003) CAPRI: a critical assessment of predicted interactions. Proteins: Struct Funct Bioinf 52(1):2–9

    CAS  Google Scholar 

  22. Kazi MM et al (2016) The potential of Wnt signaling pathway in cancer: a focus on breast cancer. Cancer Transl Med 2(2):55

    Google Scholar 

  23. Kemp CR et al (2007) Expression of Frizzled5, Frizzled7, and Frizzled10 during early mouse development and interactions with canonical Wnt signaling. Dev Dyn 236(7):2011–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim M et al (2008) Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 48(5):780–791

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirikoshi H, Sekihara H, Katoh M (2001) Up-regulation of Frizzled-7 (FZD7) in human gastric cancer. Int J Oncol 19(1):111–115

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Knappe S et al (2004) Identification of domain structures in the propeptide of corin essential for the processing of proatrial natriuretic peptide. J Biol Chem 279(33):34464–34471

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koller K, Goeddel D (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86(4):1081–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kukic P et al (2013) Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 135(45):16968–16976

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar S et al (2014) Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. BMC Biol 12(1):44

    PubMed  PubMed Central  Google Scholar 

  31. Kumari R et al (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lemak A, Balabaev N (1994) On the Berendsen thermostat. Mol Simul 13(3):177–187

    CAS  Google Scholar 

  34. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339(5):321–328

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nile AH et al (2018) A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol 14(6):582

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076

  37. Ren W et al (2016) MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7. Biochem Biophys Res Commun 469(3):633–638

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Serafino A, Pierimarchi P (2014) Atrial natriuretic peptide: a magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators. Curr Med Chem 21(21):2401–2409

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Serafino A et al (2012) Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: evidence for an Akt-mediated cross-talk between NHE-1 activity and Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA) 1822(6):1004–1018

    CAS  Google Scholar 

  40. Ueno K et al (2008) Frizzled-7 as a potential therapeutic target in colorectal cancer. Neoplasia (New York, NY) 10(7):697

    CAS  Google Scholar 

  41. van der Spoel D, Hess B (2011) GROMACS—the road ahead. Wiley Interdisc Rev: Comput Mol Sci 1(5):710–715

    Google Scholar 

  42. Vermeulen L et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vesely DL (2005) Atrial natriuretic peptides: anticancer agents. J Investig Med 53(7):360–365

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilkins MR, Redondo J, Brown LA (1997) The natriuretic-peptide family. The Lancet 349(9061):1307

    CAS  Google Scholar 

  46. Yang L et al (2011) FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 30(43):4437–4446

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida T et al (2018) Three-dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells. Oncotarget 9(13):11060

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Research Council of Tarbiat Modares University, Tehran, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majid Taghdir.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2037 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehghanbanadaki, N., Taghdir, M. & Naderi-Manesh, H. Investigation of Atrial Natriuretic Peptide as A Competitive Inhibitory Candidate Against Wnt/β-Catenin Signalling: A Molecular Dynamics Approach. Int J Pept Res Ther 27, 353–363 (2021). https://doi.org/10.1007/s10989-020-10085-9

Download citation

Keywords

  • Atrial natriuretic peptide
  • Cancer
  • FZD
  • Wnt signaling