Production Enhancement of an Anticoagulant Trypsin Inhibitor from Oceanimonas sp. BPMS22 and Its Anti-cancer Activity

Abstract

The significant role of proteases in the cancer progression exposed them as potential targets for drug discovery. Regulating protease activities using protease inhibitors is one of the major therapeutic strategies for the treatment of cancer. The proteolysis activities of serine proteases in different stages of metastasis can be regulated by serine protease inhibitors. In the present work, the application of a peptide trypsin inhibitor (TI) from Oceanimonas sp. BPMS22 in cancer treatment was exploited. Initially, the process parameters such as initial medium pH, glucose, yeast extract, and sodium chloride concentrations were optimized for the maximum inhibitor activity using Response surface methodology. The maximum specific trypsin inhibitor activity observed was 40.16 ± 1.33 IU/mg protein at predicted critical conditions, glucose, 19.51 g/L; yeast extract, 23.04 g/L; sodium chloride, 28.29 g/L; and pH 7.26. Further, the apoptotic cell death of purified trypsin inhibitor-treated human chronic myeloid leukemia (K562) cell lines was demonstrated by MTT assay, AO/EtBr staining, and DNA ladder assay. The cellular oxidative stress in K562 cells was confirmed by glutathione levels and fluorescence imaging of ROS generation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmad S, Ahsan AA (2011) Therapeutic roles of heparin anticoagulants in cancer and related disorders. Med Chem 7:504–517

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M (2005) Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton's peroxidation. J Hazard Mater 123:187–195

    CAS  PubMed  PubMed Central  Google Scholar 

  3. An W, Hwang S, Trepel J, Blagosklonny M (2000) Protease inhibitor-induced apoptosis: accumulation of wt p53, p21 WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anthony P, Harish B, Jampala P, Ramanujam S, Uppuluri KB (2016) Statistical optimization, purification and applications of xylanase produced from mixed bacteria in a solid liquid fermentation using Prosopis juliflora. Biocatal Agric Biotechnol 8:213–220

    Google Scholar 

  5. Bai CZ, Feng ML, Hao XL, Zhao ZJ, Li YY, Wang ZH (2015) Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol Med Rep 12:1777–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brisdelli F, Coccia C, Cinque B, Cifone MG, Bozzi A (2007) Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol Cell Biochem 296:137–149

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai Y, Lu J, Miao Z, Lin L, Ding J (2007) Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol Therapy 6:1794–1799

    CAS  Google Scholar 

  8. Caine GJ, Lip GY (2002) Anticoagulants as anticancer agents? Lancet Oncol 3:591–592

    PubMed  PubMed Central  Google Scholar 

  9. Carley KM, Kamneva NY, Reminga J (2004) Response surface methodology: CASOS technical report Center for Computational Analysis of Social and Organizational Systems. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  10. Castro-Guillén JL, García-Gasca T, Blanco-Labra A (2010) Protease inhibitors as anticancer agents. Nova Science Publishers Inc, New York

    Google Scholar 

  11. Chen Y-W, Huang S-C, Lin-Shiau S-Y, Lin J-K (2005) Bowman-Birk inhibitor abates proteasome function and suppresses the proliferation of MCF7 breast cancer cells through accumulation of MAP kinase phosphatase-1. Carcinogenesis 26:1296–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Croucher DR, Saunders DN, Lobov S, Ranson M (2008) Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 8:535

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Danø K, Behrendt N, Høyer-Hansen G, Johnsen M, Lund LR, Ploug M, Rømer J (2005) Plasminogen activation and cancer. Thromb Haemost 93:676–681

    PubMed  PubMed Central  Google Scholar 

  14. Dash SK et al (2015) Folate decorated delivery of self assembled betulinic acid nano fibers: a biocompatible anti-leukemic therapy. RSC Advances 5:24144–24157

    CAS  Google Scholar 

  15. de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP, Ferreira AK (2017) The roles of ROS in cancer heterogeneity and therapy. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2467940

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dia VP, Krishnan HB (2016) BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci Rep 6:33532

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dinarvand M, Rezaee M, Foroughi M (2017) Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Braz J Microbiol 48:427–441

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fereidunian A, Sadeghalvad M, Oscoie MO, Mostafaie A (2014) Soybean Bowman-Birk protease inhibitor (BBI): Identification of the mechanisms of BBI suppressive effect on growth of two adenocarcinoma cell lines: AGS and HT29. Archives Med Res 45:455–461

    CAS  Google Scholar 

  19. Fritz H, Tschesche H, Fink E (1976) Proteinase inhibitors from boar seminal plasma. Methods Enzymol 45:834–847

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo J, Zhao W, Hao W, Ren G, Lu J, Chen X (2014) Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species (ROS) in leukemia K562 cells. Anti-Cancer Agents Med Chem 14:1146–1153

    CAS  Google Scholar 

  22. Harish B, Uppuluri KB (2018a) Modeling of growth kinetics for an isolated marine bacterium, Oceanimonas sp. BPMS22 during the production of a trypsin inhibitor. Prep Biochem Biotechnol 48:1–8

    Google Scholar 

  23. Harish B, Uppuluri KB (2018b) Potential anticoagulant activity of trypsin inhibitor purified from an isolated marine bacterium Oceanimonas sp. BPMS22 and its Kinetics. Mar Biotechnol 20:1–12

    Google Scholar 

  24. Harish BS, Uppuluri KB (2018c) Microbial serine protease inhibitors and their therapeutic applications. Int J Biol Macromol 107:1373–1387. https://doi.org/10.1016/j.ijbiomac.2017.09.115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ilies MA, Supuran CT, Scozzafava A (2002) Therapeutic applications of serine protease inhibitors. Expert Opin Ther Pat 12:1181–1214

    CAS  Google Scholar 

  26. Inan M, Chiruvolu V, Eskridge KM, Vlasuk GP, Dickerson K, Brown S, Meagher MM (1999) Optimization of temperature–glycerol–pH conditions for a fed-batch fermentation process for recombinant hookworm (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzyme Microbial Technol. 24:438–445

    CAS  Google Scholar 

  27. Jeong C-H, Joo SH (2016) Downregulation of reactive oxygen species in apoptosis. J Cancer Prev 21:13

    PubMed  PubMed Central  Google Scholar 

  28. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prot4493

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kraus M, Müller-Ide H, Rückrich T, Bader J, Overkleeft H, Driessen C (2014) Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res 38:383–392

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanza A, Tava A, Catalano M, Ragona L, Singuaroli I, Della Cuna FSR, Della Cuna GR (2004) Effects of the Medicago scutellata trypsin inhibitor (MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells. Anticancer Res 24:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lima A, Mota J, Monteiro S, Ferreira R (2016) Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration. Food Chem 197:30–38

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu A et al (2019) Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy. Cancer Biomark. 26:281–289

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu K, Liu P-c, Liu R, Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monitor Basic Res 21:15

    Google Scholar 

  34. Luo H, Li J, Chen X (2010) Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells. Biomed Pharmacother. 64:521–526

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahapatra SK, Chakraborty SP, Majumdar S, Bag BG, Roy S (2009) Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro. Eur J Pharmacol 623:132–140

    Google Scholar 

  36. Marathe K, Chaudhari A, Kamalaja K, Maheshwari V (2016) Magnesium dependent proteinaceous protease inhibitor with pesticidal potential from alkali-halotolerant Streptomyces spp.: optimization of production using statistical tools. Biocatal Agric Biotechnol. 5:58–68

    Google Scholar 

  37. Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresource Technol. 99:562–569

    CAS  Google Scholar 

  38. Morjen M et al (2014) PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvasc Res 95:149–156

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta (BBA). 582:67–78

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, Taitai A (2017) Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab J Chem 10:S3292–S3302

    CAS  Google Scholar 

  41. Rajendran N, Subramaniam S, Raja MRC, Brindha P, Kar Mahapatra S, Sivasubramanian A (2017) Plant phenyl-propanoids-conjugated silver nanoparticles from edible plant Suaeda maritima (L.) dumort. Inhibit proliferation of K562-human myeloid leukemia cells. Artif Cells Nanomed Biotechnol 45:1336–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sen S, Dutta S (2012) Evaluation of anti-cancer potential of ragi bifunctional inhibitor (RBI) from Eleusine coracana on human chronic myeloid leukemia cells. Eur J Plant Sci Biotechnol 6:103–108

    Google Scholar 

  43. Shaik IH, Mehvar R (2006) Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bioanal Chem 385:105–113

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Srikanth R, Siddartha G, Reddy CHS, Harish B, Ramaiah MJ, Uppuluri KB (2015) Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohyd Polym 123:8–16

    CAS  Google Scholar 

  45. Stenman U-H (2002) Tumor-associated trypsin inhibitor Clinical chemistry 48:1206–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Subhashini J, Mahipal SV, Reddy MC, Reddy MM, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68:453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Venkatachalam P, Nadumane VK (2019) Purification and characterization of a protease inhibitor with anticancer potential from bacillus endophyticus JUPR15. Curr Cancer Therapy Rev. 15:74–82

    CAS  Google Scholar 

  48. Wang C-I, Yang Q, Craik CS (1995) Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J Biol Chem 270:12250–12256

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z-H et al (2007) Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells. Biol Pharmaceut Bull 30:783–786

    CAS  Google Scholar 

  50. Westerweel PE, Te Boekhorst PA, Levin M-D, Cornelissen JJ (2019) New approaches and treatment combinations for the management of chronic myeloid leukemia. Front Oncol. https://doi.org/10.3389/fonc.2019.00665

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xiang T, Du L, Pham P, Zhu B, Jiang S (2015) Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett. 364:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yahata T et al (2020) Targeting of plasminogen activator inhibitor-1 activity promotes elimination of chronic myeloid leukemia stem cells. Haematologica. https://doi.org/10.3324/haematol.2019.230227

    Article  Google Scholar 

  53. Zarei M, Niaei A, Salari D, Khataee A (2010) Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. J Hazard Mater. 173:544–551

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Harish B.S. earnestly acknowledges SASTRA Deemed University for Teaching Assistantship. KBU thank Department of Science and Technology, Government of India for the financial support (SB/FTP/ETA-212/2012). SKM & KBU thank the department of Biotechnology, Government of India for the financial support (BT/PR26940/AAQ/3/887/2017) and DST-FIST Grant (SR/FST/ETI-331/2013) to SCBT, SASTRA for establishing infrastructure facilities are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Santanu Kar Mahapatra or Kiran Babu Uppuluri.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harish, B.S., Raja, M.R.C., Mahapatra, S.K. et al. Production Enhancement of an Anticoagulant Trypsin Inhibitor from Oceanimonas sp. BPMS22 and Its Anti-cancer Activity. Int J Pept Res Ther 27, 197–208 (2021). https://doi.org/10.1007/s10989-020-10078-8

Download citation

Keywords

  • Serine protease inhibitor
  • Oceanimonas sp. BPMS22
  • Central composite design (CCD)
  • Anti-CML activity