Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance

Abstract

Antimicrobial peptides (AMPs) are short molecules produced by almost all organisms. Fish AMPs contain innate immune components as their primary immune molecules. The fish AMPs include piscidins, hepcidins, defensins, cathelicidins and histone-derived peptides. Piscidin is potent and broad-spectrum; this peptide was conserved among Acanthopterygii superorder and is therapeutically important among other AMPs. It was present mainly in the tissues of gills, muscle, head-kidney, skin and intestine of teleost. Piscidin AMP family includes piscidin, moronecidin, pleurocidin, epinecidin, gaduscidin, misgurin, dicentracin, chrysophsin and myxinidin. This review reports the structural properties of various piscidin and their mode of action as it is important to know their mechanism how the peptide involved in antimicrobial activity. In addition, the gene expression of piscidin which influenced the immune responses, their pharmaceutical importance and biological applications were described. Overall, the review explains a broad spectrum of knowledge on piscidin, its classes and types, structure, cytotoxicity, membrane permeabilization, properties and therapeutical implications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

AMPs:

Antimicrobial peptides (AMPs)

AMPPs:

Antimicrobial peptides and proteins

SGIV:

Singapore grouper iridovirus

VNNV:

Viral nervous necrosis virus

MHC:

Major histocompatibility complex

TLR:

Toll-like receptor

EST:

Expressed sequence tag (EST)

LPS:

Lipo poly saccharide

NMR:

Nuclear magnetic resonance

DPC:

Dodecyl phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphatidylcholine

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phosphatidylglycerol

POPE:

1-Palmitoyl-2-oleoyl-sn-glycerophosphatidylethanolamine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-phosphoglycerol

PAMPs:

Pathogen-associated molecular patterns

PRRs:

Pattern recognition receptors

HNF:

Hepatocyte nuclear factor

cBB:

Cured barramundi brain

PEDV:

Porcine epidemic diarrhea virus

PRV:

Pseudorabies virus

TGEV:

Transmissible gastroenteritis virus

PRRSV:

Porcine reproductive and respiratory syndrome virus

RV:

Rotavirus

QCM-D:

Quartz crystal microbalance with dissipation monitoring

References

  1. Acosta J, Montero V, Carpio Y, Velázquez J (2013) Cloning and functional characterization of three novel antimicrobial peptides from tilapia (Oreochromis niloticus). Aquaculture 372:9–18. https://doi.org/10.1016/j.aquaculture.2012.07.032

    CAS  Article  Google Scholar 

  2. Akila S, Rajesh P, Arasu MV, Al-Dhabi NA, Mukesh P, Arockiaraj J (2018) Fish heat shock cognate 70 derived AMPs CsHSC70 A1 and CsHSC70 A2. Int J Pept Res Ther 24:143–155. https://doi.org/10.1007/s10989-017-9599-z

    CAS  Article  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolym Pept Sci Sect 47:415–433. https://doi.org/10.1002/(SICI)1097-0282

    CAS  Article  Google Scholar 

  5. Andrews M, Battaglene S, Cobcroft J, Adams M, Noga E, Nowak B (2010) Host response to the chondracanthid copepod Chondracanthus goldsmidi, a gill parasite of the striped trumpeter, Latris lineata (Forster), in Tasmania. J Fish Dis 33:211–220. https://doi.org/10.1111/j.1365-2761.2009.01107.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, Palanisamy R, Marimuthu K, Pasupuleti M, Arockiaraj J (2014) Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel. Microbiol Res 169(11):824–834. https://doi.org/10.1016/j.micres.2014.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Arasu A, Kumaresan V, Palanisamy R, Arasu MV, Al-Dhabi NA, Ganesh MR, Arockiaraj A (2017) Bacterial membrane binding and pore formation abilities of carbohydrate recognition domain of fish lectin. Dev Comp Immunol 67:202–212. https://doi.org/10.1016/j.dci.2016.10.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Arasu A, Kumaresan V, Ganesh MR, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) Bactericidal activity of fish galectin 4 derived membrane-binding peptide tagged with oligotryptophan. Dev Comp Immunol 71:37–48. https://doi.org/10.1016/j.dci.2016.10.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Arockiaraj J, Gnanam AJ, Dhanaraj M, Ranganath G, Milton J, Singh A, Saravanan M, Marimuthu K, Bhassu S (2012) Crustin, a WAP domain containing antimicrobial peptide from freshwater prawn M. rosenbergii: immune characterization. Fish Shellfish Immunol 34:109–118. https://doi.org/10.1016/j.fsi.2012.10.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Arockiaraj J, Gnanam AJ, Kumaresan V, Palanisamy R, Bhatt P, Thirumalai MK, Roy A, Pasupuleti M, Kasi M (2013) An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. Fish Shellfish Immunol 35(5):1511–1522. https://doi.org/10.1016/j.fsi.2013.08.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, Kasi M, Chaurasia MK (2014) A novel single-domain peptide, anti-LPS factor from prawn: synthesis of peptide, antimicrobial properties and complete molecular characterization. Peptides 53:79–88. https://doi.org/10.1016/j.peptides.2013.11.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Arockiaraj J, Kumeresan V, Chaurasia MK, Bhatt P, Palanisamy R, Pasupuleti M, Gnanam AJ, Kasi M (2014) Molecular characterization of a novel cathepsin B from striped murrel Channa striatus: bioinformatics analysis, gene expression, synthesis of peptide and antimicrobial property. Turk J Fish Aquat Sci 14:379–389. https://doi.org/10.4194/1303-2712-v14_2_08

    Article  Google Scholar 

  13. Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M (2015) Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. Fish Shellfish Immunol 43:364–374. https://doi.org/10.1016/j.fsi.2014.12.036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Bae JS, Shim SH, Hwang SD, Park MA, Jee BY, An CM, Kim YO, Kim JW, Park CI (2014) Expression analysis and biological activity of moronecidin from rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol 40:345–353. https://doi.org/10.1016/j.fsi.2014.07.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Baumann M (1991) A method for identifying a proposed carbohydrate-binding motif of proteins. Glycobiology 1(5):537–542. https://doi.org/10.1093/glycob/1.5.537

    CAS  Article  Google Scholar 

  16. Bo J, Yang Y, Zheng R, Fang C, Jiang Y, Liu J, Wang K (2019) Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish Shellfish Immunol 93:1007–1017. https://doi.org/10.1016/j.fsi.2019.08.054

    CAS  Article  Google Scholar 

  17. Brown T, Chipman J, Katsiadaki I, Sanders M, Craft JA (2008) Construction of subtracted EST and normalised cDNA libraries from liver of chemical-exposed three-spined stickleback (Gasterosteus aculeatus) containing pollutant-responsive genes as a resource for transcriptome analysis. Mar Environ Res 66(1):127–130. https://doi.org/10.1016/j.marenvres.2008.02.043

    CAS  Article  Google Scholar 

  18. Browne M, Feng C, Booth V (2011) Characterization and expression studies of Gaduscidin-1 and Gaduscidin-2; paralogous antimicrobial peptide-like transcripts from Atlantic cod (Gadus morhua). Dev Comp Immunol 35(3):399–408. https://doi.org/10.1016/j.dci.2010.11.010

    CAS  Article  Google Scholar 

  19. Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184. https://doi.org/10.1111/j.0105-2896.2004.0124.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Burrowes OJ, Hadjicharalambous C, Diamond G, Lee TC (2006) Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. J Food Sci 69(3):66–71. https://doi.org/10.1111/j.1365-2621.2004.tb13373.x

    Article  Google Scholar 

  21. Campagna S, Saint N, Molle G, Aumelas A (2007) Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46:1771–1778. https://doi.org/10.1021/bi0620297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Campoverde C, Milne DJ, Estévez A, Duncan N, Secombes CJ, Andree KB (2017) Ontogeny and modulation after PAMPs stimulation of β-defensin, hepcidin, and piscidin antimicrobial peptides in meagre (Argyrosomus regius). Fish Shellfish Immunol 69:200–210. https://doi.org/10.1016/j.fsi.2017.08.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Chaithanya ER, Philip R, Sathyan N, Anil Kumar PR (2013) Molecular characterization and phylogenetic analysis of a histone-derived antimicrobial peptide teleostin from the marine teleost fishes, Tachysurus jella and Cynoglossus semifasciatus. ISRN Mol Biol 13:1–7. https://doi.org/10.1155/2013/185807

    CAS  Article  Google Scholar 

  24. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M, Harikrishnan R, Arockiaraj J (2014) A prawn core histone 4: derivation of N and C terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiol Res 170:78–86. https://doi.org/10.1016/j.micres.2014.08.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chee PY, Mang M, Lau ES, Tan LTH, He YW, Lee WL, Goh BH (2019) Epinecidin-1, an antimicrobial peptide derived from grouper (Epinephelus coioides): pharmacological activities and applications. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02631

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Lin W, Wu J, Her G, Hui CF (2009a) Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides 30(12):2365–2373. https://doi.org/10.1016/j.peptides.2009.08.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Chen JY, Lin WJ, Lin TL (2009b) A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30(9):1636–1642. https://doi.org/10.1016/j.peptides.2009.06.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Chen W, Cotten ML (2014) Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr Purif 102:63–68. https://doi.org/10.1016/j.pep.2014.08.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L (2004) Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323:268–275. https://doi.org/10.1016/j.virol.2004.02.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Choi H, Lee DG (1820) Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim Biophys Acta (BBA) 12:1831–1838. https://doi.org/10.1016/j.bbagen.2012.08.012

    CAS  Article  Google Scholar 

  31. Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G (2000) Characterization of a fish antimicrobial peptide: gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 44:2039–2045. https://doi.org/10.1128/AAC.44.8.2039-2045.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Colorni A, Ullal A, Heinisch G, Noga EJ (2008) Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. J Fish Dis 31:423–432. https://doi.org/10.1111/j.1365-2761.2008.00922.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Conlon J, Mechkarska M, Lukic M, Flatt PR (2014) Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57:67–77. https://doi.org/10.1016/j.peptides.2014.04.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Corrales J, Gordon WL, Noga EJ (2009) Development of an ELISA for quantification of the antimicrobial peptide piscidin 4 and its application to assess stress in fish. Fish Shellfish Immunol 27:154–163. https://doi.org/10.1016/j.fsi.2009.02.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Corrales J, Mulero I, Mulero V, Noga EJ (2010) Detection of antimicrobial peptides related to piscidin 4 in important aquacultured fish. Dev Comp Immunol 34:331–343. https://doi.org/10.1016/j.dci.2009.11.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Costa F, Gomes P, Martins MCL (2018) Antimicrobial peptides (AMP) biomaterial coatings for tissue repair. Peptides and proteins as biomaterials for tissue regeneration and repair. Woodhead Publishing, Cambridge, pp 329–345. https://doi.org/10.1016/b978-0-08-100803-4.00013-9

  37. Cuesta A, Meseguer J, Esteban M (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol 45(8):2333–2342. https://doi.org/10.1016/j.molimm.2007.11.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. De Angelis AA, Grant CV, Baxter MK, McGavin JA, Opella SJ, Cotton ML (2011) Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers. Biophys J 101:1086–1094. https://doi.org/10.1016/j.bpj.2011.07.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. De Zoysa M, Nikapitiya C, Whang I, Lee JS, Lee J (2009) Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol 27(5):639–646. https://doi.org/10.1016/j.fsi.2009.08.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Dezfuli BS, Pironi F, Giari L, Noga EJ (2010) Immunocytochemical localization of piscidin in mast cells of infected seabass gill. Fish Shellfish Immunol 28:476–482. https://doi.org/10.1016/j.fsi.2009.12.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Dezfuli BS, Giari L, Lui A, Lorenzoni M, Noga EJ (2011) Mast cell responses to Ergasilus (Copepoda), a gill ectoparasite of sea bream. Fish Shellfish Immunol 30:1087–1094. https://doi.org/10.1016/j.fsi.2011.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Diamond G, Beckloff N, Weinberg A (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392. https://doi.org/10.2174/138161209788682325

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB (2015) Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0144611

    CAS  Article  Google Scholar 

  44. Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B (2019) The role of lectins in finfish: a review. Rev Fish Sci Aquacult 27:152–169. https://doi.org/10.1080/23308249.2018.1520191

    Article  Google Scholar 

  45. Fernandes JMO, Ruangsri J, Kiron V (2010) Atlantic cod piscidin and its diversification through positive selection. PLoS ONE 5(3):e9501. https://doi.org/10.1371/journal.pone.0009501

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51. https://doi.org/10.1038/nrd3591

    CAS  Article  Google Scholar 

  47. Gordon YJ, Romanowski EG, McDermott AM (2005) Mini review: a review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515. https://doi.org/10.1080/02713680590968637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Guo M, Wei J, Huang X, Huang Y, Qin Q (2012) Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 32(5):828–838. https://doi.org/10.1016/j.fsi.2012.02.005

    CAS  Article  Google Scholar 

  49. Han H, Gopal R, Park Y (2016) Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 48(2):505–522. https://doi.org/10.1007/s00726-015-2104-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Hancock R (2000) The role of antimicrobial peptides in animal defenses. PNAS 97(16):8856–8861. https://doi.org/10.1073/pnas.97.16.8856

    CAS  Article  Google Scholar 

  51. Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100:572–583. https://doi.org/10.1002/bip.22250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Hayden RM, Goldberg GK, Ferguson BM, Schoeneck MW, Libardo MDJ, Mayeux SE, Shrestha A, Bogardus KA, Hammer J, Pryshchep S, Lehman HK, McCormick ML, Blazyk J, Angeles-Boza AM, Fu R, Cotton ML (2015) Complementary effects of host defense peptides piscidin 1 and piscidin 3 on DNA and lipid membranes: biophysical insights into contrasting biological activities. J Phys Chem B 119:15235–15246. https://doi.org/10.1021/acs.jpcb.5b09685

    CAS  Article  Google Scholar 

  53. Heras J, Koop B, Aguilar A (2011) A transcriptomic scan for positively selected genes in two closely related marine fishes: Sebastes caurinus and S. rastrelliger. Marine genomes 4(2):93–98. https://doi.org/10.1016/j.margen.2011.02.001

    Article  Google Scholar 

  54. Hicks RP, Mones E, Kim H, Koser BW, Nichols DA, Bhattacharjee AK (2003) Comparison of the conformation and electrostatic surface properties of magainin peptides bound to sodium dodecyl sulfate and dodecylphosphocholine micelles. Biopolymers 68:459–470. https://doi.org/10.1002/bip.10325

    CAS  Article  Google Scholar 

  55. Hiemstra PS, Amatngalim GD, Van Der Does AM, Taube C (2016) Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest 149:545–551. https://doi.org/10.1378/chest.15-1353

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hu Y, Yang Y, You QD, Liu W, Gu HY, Zhao L, Zhang K, Wang W, Wang XT, Guo QL (2006) Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochem Biophys Res Commun 351:521–527. https://doi.org/10.1016/j.bbrc.2006.10.064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Hu H, Guo N, Chen S, Guo X, Liu X (2019) Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo. Virol J. https://doi.org/10.1186/s12985-019-1199-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huang HN, Chan YL, Wu CJ, Chen JY (2015) Tilapia Piscidin 4 (TP4) stimulates cell proliferation and wound closure in MRSA-infected wounds in mice. Mar Drugs 13:2813–2833. https://doi.org/10.3390/md13052813

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Ii MV (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(7):905–917. https://doi.org/10.1021/cb1001558

    CAS  Article  Google Scholar 

  60. Iijima N, Tanimoto N, Emoto Y, Morita Y, Uematsu K, Murakami T, Nakai T (2003) Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem 270:675–686. https://doi.org/10.1046/j.1432-1033.2003.03419.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Jensen V, Robertsen B (2000) Cloning of an Mx cDNA from atlantic halibut (Hippoglossus hippoglossus) and characterization of Mx mRNA expression in response to double-stranded RNA or infectious pancreatic necrosis virus. J Interf Cytokine Res 20(8):701–710. https://doi.org/10.1089/10799900050116408

    CAS  Article  Google Scholar 

  62. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511. https://doi.org/10.1128/CMR.00056-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Jeong MC, Jeon D, Shin A, Jin S, Shin SY, Park YS, Kim Y (2016) Effects of hydrophobic peptoid substitutions on the bacterial cell selectivity and antimicrobial activity of Piscidin 1. Bull Korean Chem Soc 37:1545–1551. https://doi.org/10.1002/bkcs.10959

    CAS  Article  Google Scholar 

  64. Jiang Z, Vasil AI, Vasil ML, Hodges RS (2014) “Specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin S4 against the gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals 7:366–391. https://doi.org/10.3390/ph7040366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Jin JY, Zhou L, Wang Y, Li Z, Zhao JG, Zhang QY, Gui JF (2010) Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS ONE 5(12):e12883. https://doi.org/10.1371/journal.pone.0012883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta (BBA) 1768(6):1400–1405. https://doi.org/10.1016/j.bbamem.2007.02.024

    CAS  Article  Google Scholar 

  67. Katzenback B (2015) Antimicrobial peptides as mediators of innate immunity in teleosts. Biology (Basel) 4:607–639. https://doi.org/10.3390/biology4040607

    CAS  Article  Google Scholar 

  68. Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu MV, Al-Dhabi NA, Pasupuleti M, Marimuthu K, Arockiaraj J (2015) A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol 68:421–433. https://doi.org/10.1016/j.molimm.2015.10.001

    CAS  Article  Google Scholar 

  69. Kumaresan V, Mukesh P, Arasu MV, Al-Dhabi NA, Arshad A, Amin SMN, Yusoff FM, Arockiaraj J (2018) A comparative transcriptome approach for identification of molecular changes in Aphanomyces invadans infected Channa striatus. Mol Biol Rep 45(6):2511–2523. https://doi.org/10.1007/s11033-018-4418-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Kumaresan V, Pasupuleti M, Paray BA, Al-Sadoon MK, Arockiaraj J (2019) Gene profiling of antimicrobial peptides, complement factors and MHC molecules from the skin transcriptome of Channa striatus and its expression pattern during Aeromonas hydrophila infection. Fish Shellfish Immunol 84:48–55. https://doi.org/10.1016/j.fsi.2018.09.061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. ASM 63(4):1291–1297

    CAS  Google Scholar 

  72. Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C, Bulet P (2001) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. JBC 277:5030–5039. https://doi.org/10.1074/jbc.M109173200

    CAS  Article  Google Scholar 

  73. Lee SA, Kim YK, Lim SS, Zhu WL, Ko H, Shin SY, Hahm KS, Kim Y (2007) Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry 46:3653–3663. https://doi.org/10.1021/bi062233u

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Lee E, Shin A, Jeong KW, Jin B, Jnawali HN, Shin S, Shin SY, Kim Y (2014) Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS ONE. https://doi.org/10.1371/journal.pone.0114453

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215. https://doi.org/10.1016/j.peptides.2012.07.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Lin S, Fan T, Wu J, Hui C, Chen J (2009a) Immune response and inhibition of bacterial growth by electrotransfer of plasmid DNA containing the antimicrobial peptide, epinecidin-1, into zebrafish muscle. Fish Shellfish Immunol 26:451–458. https://doi.org/10.1016/j.fsi.2009.01.008

    CAS  Article  Google Scholar 

  77. Lin WJ, Chien YL, Pan CY, Lin TL, Chen JY, Chiu SJ, Hui CF (2009b) Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30(2):283–290. https://doi.org/10.1016/j.peptides.2008.10.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Lin HJ, Huang TC, Muthusamy S, Lee JF, Duann YF, Lin CH (2012) Piscidin-1, an antimicrobial peptide from fish (hybrid striped bass Morone saxatilis × M. chrysops), Induces apoptotic and necrotic activity in HT1080 cells. Zool Sci 29:327–332. https://doi.org/10.2108/zsj.29.327

    CAS  Article  Google Scholar 

  79. Lu XJ, Chen J, Huang ZA, Shi YH, Lυ JN (2011) Identification and characterization of a novel cathelicidin from ayu, Plecoglossus altivelis. Fish Shellfish Immunol 31(1):52–57. https://doi.org/10.1016/j.fsi.2011.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Maier VH, Dorn KV, Gudmundsdottir BK, Gudmundsson GH (2008) Characterisation of cathelicidin gene family members in divergent fish species. Mol Immunol 45(14):3723–3730. https://doi.org/10.1016/j.molimm.2008.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Marimuthu K, Gunaselvam P, Rahman MA, Xavier R, Arockiaraj J, Subramanian S, Yusoff FM, Arshad A (2015) Antibacterial activity of ovary extract from sea urchin Diadema setosum. Eur Rev Med Pharmacol Sci 19:1895–1899

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mason A, Chotimah I, Bertani P (2006) A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin. Mol Membr Biol 23(2):185–194. https://doi.org/10.1080/09687860500485303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7:265–310. https://doi.org/10.3390/ph7030265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. McDonald M, Mannion M, Pike D, Let K (2015) Structure–function relationships in histidine-rich antimicrobial peptides from atlantic cod. BBA 1848(7):1451–1461. https://doi.org/10.1016/j.bbamem.2015.03.030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Mehrnejad F, Zarei M (2010) Molecular dynamics simulation study of the interaction of piscidin 1 with dppc bilayers: structure-activity relationship. J Biomol Struct Dyn 27:551–559. https://doi.org/10.1080/07391102.2010.10507338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Meloni M, Candusso S, Galeotti M, Volpatti D (2015) Preliminary study on expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) following in vivo infection with Vibrio anguillarum A time course experiment. Fish Shellfish Immunol 43:82–90. https://doi.org/10.1016/j.fsi.2014.12.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Menousek J, Mishra B, Hanke M (2012) Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int J Antimicrob Agents 39(5):402–406. https://doi.org/10.1016/j.ijantimicag.2012.02.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Michel JP, Wang YX, Kiesel I, Gerelli Y, Rosilio V (2017) Disruption of asymmetric lipid bilayer models mimicking the outer membrane of Gram-negative bacteria by an active plasticin. Langmuir 33(41):11028–11039. https://doi.org/10.1021/acs.langmuir.7b02864

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Moon WJ, Hwang DK, Park EJ, Kim YM, Chae YK (2007) Recombinant expression, isotope labeling, refolding, and purification of an antimicrobial peptide, piscidin. Protein Expr Purif 51:141–146. https://doi.org/10.1016/j.pep.2006.07.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Morash MG, Douglas SE, Robotham A, Ridley CM, Gallant JW, Soanes KH (2011) The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. Dis Model Mech 4:622–633. https://doi.org/10.1242/dmm.007310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Mulero I, Noga EJ, Meseguer J, García-Ayala A, Mulero V (2008) The antimicrobial peptides piscidins are stored in the granules of professional phagocytic granulocytes of fish and are delivered to the bacteria-containing phagosome upon phagocytosis. Dev Comp Immunol 32:1531–1538. https://doi.org/10.1016/j.dci.2008.05.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Narayana J, Huang H, Wu C (2015) Epinecidin-1 antimicrobial activity: in vitro membrane lysis and In vivo efficacy against Helicobacter pylori infection in a mouse model. Biomaterials 61:41–51. https://doi.org/10.1016/j.biomaterials.2015.05.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Niu SF, Jin Y, Xu X, Qiao Y, Wu Y, Mao Y, Su YQ, Wang J (2013) Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol 35:513–524. https://doi.org/10.1016/j.fsi.2013.05.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Noga E, Silaphaduang U (2003) Piscidins: a novel family of peptide antibiotics from fish. Drug News Perspect 16(2):87–92. https://doi.org/10.1358/dnp.2003.16.2.829325

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Noga EJ, Silphaduang U, Park NG, Seo JK, Stephenson J, Kozlowicz S (2009) Piscidin 4, a novel member of the piscidin family of antimicrobial peptides. Comp Biochem Physiol B Biochem Mol Biol 152:299–305. https://doi.org/10.1016/j.cbpb.2008.12.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Pálffy R, Gardlík R, Behuliak M, Kadasi L, Turna J, Celec P (2009) On the physiology and pathophysiology of antimicrobial peptides. Mol Med 15:51–59. https://doi.org/10.2119/molmed.2008.00087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Pan CY, Chen JY, Cheng YSE, Chen CY, Ni IH, Sheen JF, Pan YL, Kuo CM (2007) Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 26:403–413. https://doi.org/10.1089/dna.2006.0564

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Pan CY, Chen JY, Ni IH, Wu JL, Kuo CM (2008) Organization and promoter analysis of the grouper (Epinephelus coioides) epinecidin-1 gene. Comp Biochem Physiol B Biochem Mol Biol 150:358–367. https://doi.org/10.1016/j.cbpb.2008.04.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Pan C, Chen J, Lin T (2009) In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans. Peptides 30(6):1058–1068. https://doi.org/10.1016/j.peptides.2009.02.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Pan CY, Rajanbabu V, Chen JY, Her GM, Nan FH (2010) Evaluation of the epinecidin-1 peptide as an active ingredient in cleaning solutions against pathogens. Peptides 31(8):1449–1458. https://doi.org/10.1016/j.peptides.2010.05.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Pan Y, Zheng L, Mao Y, Wang J, Lin L, Su Y, Li Y (2018) The antibacterial activity and mechanism analysis of piscidin 5 like from Larimichthys crocea. Dev Comp Immunol. https://doi.org/10.1016/j.dci.2018.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  102. Park CB, Lee JH, Park IY, Kim MS, Kim SC (1997) A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 411(2–3):173–178. https://doi.org/10.1016/s0014-5793(97)00684-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Park Y, Hahm KS (2005) Antimicrobial peptides. J Biochem Mol Biol 38:507–516. https://doi.org/10.3390/ph6121543

    CAS  Article  Google Scholar 

  104. Park NG, Silphaduang U, Moon HS, Seo JK, Corrales J, Noga EJ (2011) Structure-activity relationships of piscidin 4, a piscine antimicrobial peptide. Biochemistry 50:3288–3299. https://doi.org/10.1021/bi101395j

    CAS  Article  Google Scholar 

  105. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614. https://doi.org/10.1128/AAC.46.3.605-614.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Peng KC, Pan CY, Chou HN, Chen JY (2010) Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 28:905–917. https://doi.org/10.1016/j.fsi.2010.02.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Peng K, Lee S, Hour A, Pan C, Lee L (2012) Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS ONE 7(11):e50263. https://doi.org/10.1371/journal.pone.0050263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY (2012) Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS ONE 7(11):e50263. https://doi.org/10.1371/journal.pone.0050263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Perrin BS, Tian Y, Fu R, Grant CV, Chekmenev EY, Wieczorek WE, Dao AE, Hayden RM, Burzynski CM, Venable RM, Sharma M, Opella SJ, Pastor RW, Cotton ML (2014) High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 136:3491–3504. https://doi.org/10.1021/ja411119m

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Peter Chiou P, Khoo J, Bols NC, Douglas S, Chen TT (2006) Effects of linear cationic α-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev Comp Immunol 30:797–806. https://doi.org/10.1016/j.dci.2005.10.011

    CAS  Article  Google Scholar 

  111. Prabha N, Sannasimuthu A, Kumaresan V, Elumalai P, Arockiaraj J (2019) Intensifying the anticancer potential of cationic peptide derived from serine threonine protein kinase of teleost by tagging with oligo tryptophan. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09817-3

    Article  Google Scholar 

  112. Purabi S, Stefi R, Mukesh P, Paray BA, Al-Sadoon MK, Arockiaraj J (2020) Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fibroblast cells. Mol Biol Rep 47:1821–1834. https://doi.org/10.1007/s11033-020-05276-y

    CAS  Article  Google Scholar 

  113. Rahmanpour A, Ghahremanpour MM, Mehrnejad F, Moghaddam ME (2013) Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study. J Biomol Struct Dyn 31:1393–1403. https://doi.org/10.1080/07391102.2012.737295

    CAS  Article  Google Scholar 

  114. Rajanbabu V, Chen JY (2011) Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32:415–420. https://doi.org/10.1016/j.peptides.2010.11.005

    CAS  Article  Google Scholar 

  115. Rajesh P, Prasanth B, Venkatesh K, Mukesh P, Arockiaraj J (2018) Innate and adaptive immune molecules of striped murrel Channa striatus. Rev Aquac 10:296–319. https://doi.org/10.1111/raq.12161

    Article  Google Scholar 

  116. Raju VS, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J (2020) Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. Fish Shellfish Immunol 99:368–378. https://doi.org/10.1016/j.fsi.2020.02.027

    CAS  Article  Google Scholar 

  117. Rakers S, Niklasson L, Steinhagen D, Kruse C, Schauber J, Sundell K, Paus R (2013) Antimicrobial peptides (AMPs) from fish epidermis: perspectives for investigative dermatology. J Invest Dermatol 133:1140–1149. https://doi.org/10.1038/jid.2012.503

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617. https://doi.org/10.1021/ja8093247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Ganesh MR, Mahesh A, Dhayalan A, Pasupuleti M, Arockiaraj J (2016) Pellino-1 derived cationic antimicrobial prawn peptide: bactericidal activity, toxicity and mode of action. Mol Immunol 78:171–182. https://doi.org/10.1016/j.molimm.2016.09.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Ravichandran G, Kumaresan V, Bhatt P, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) A cumulative strategy to predict and characterize antimicrobial peptides (AMPs) from protein database. Int J Pept Res Ther 23:281–290. https://doi.org/10.1007/s10989-016-9559-z

    CAS  Article  Google Scholar 

  121. Ravichandran G, Kumaresan V, Mahesh A, Dhayalan A, Arshad A, Arasu MV, Al-Dhabi NA, Pasupuleti M, Arockiaraj J (2018) Bactericidal and fungistatic activity of peptide derived from GH18 domain of prawn chitinase 3 and its immunological functions during biological stress. Int J Biol Macromol 106:1014–1022. https://doi.org/10.1016/j.ijbiomac.2017.08.098

    CAS  Article  Google Scholar 

  122. Rodrigues PNS, Vázquez-Dorado S, Neves JV, Wilson JM (2006) Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol 30(12):1156–1167. https://doi.org/10.1016/j.dci.2006.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, Von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RS, Campbell B, Koop BF (2013) Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genomics 14:452. https://doi.org/10.1186/1471-2164-14-452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Ruangsri J, Fernandes JMO, Rombout JHWM, Brinchmann MF, Kiron V (2012) Ubiquitous presence of piscidin-1 in Atlantic cod as evidenced by immunolocalisation. BMC Vet Res 8:1–13. https://doi.org/10.1186/1746-6148-8-46

    Article  Google Scholar 

  125. Ruangsri J, Salger SA, Caipang CMA, Kiron V, Fernandes JMO (2012) Differential expression and biological activity of two piscidin paralogues and a novel splice variant in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 32:396–406. https://doi.org/10.1016/j.fsi.2011.11.022

    CAS  Article  Google Scholar 

  126. Ruangsri J, Kitani Y, Kiron V, Lokesh J, Brinchmann MF, Karlsen BO, Fernandes JMO (2013) A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS ONE 8(4):e62302. https://doi.org/10.1371/journal.pone.0062302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Salerno G, Parrinello N, Salerno G, Parrinello N, Roch P (2007) cDNA sequence and tissue expression of an antimicrobial peptide, dicentracin; a new component of the moronecidin family isolated from head kidney leukocytes of sea bass, Dicentrarchus labrax. Comp Biochem Physiol B Biochem Mol Biol 146(4):521–529. https://doi.org/10.1016/j.cbpb.2006.12.007

    CAS  Article  Google Scholar 

  128. Salger SA, Reading BJ, Baltzegar DA, Sullivan CV, Noga EJ (2011) Molecular characterization of two isoforms of piscidin 4 from the hybrid striped bass (Morone chrysops × Morone saxatilis). Fish Shellfish Immunol 30:420–424. https://doi.org/10.1016/j.fsi.2010.10.009

    CAS  Article  Google Scholar 

  129. Salger SA, Cassady KR, Reading BJ, Noga EJ (2016) A diverse family of host-defense peptides (piscidins) exhibit specialized anti-bacterial and anti-protozoal activities in fishes. PLoS ONE 11:1–25. https://doi.org/10.1371/journal.pone.0159423

    CAS  Article  Google Scholar 

  130. Salger SA, Reading BJ, Noga EJ (2017) Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development. Fish Shellfish Immunol 61:173–180. https://doi.org/10.1016/j.fsi.2016.12.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Sannasimuthu A, Kumaresan V, Pasupuleti M, Paray BA, Al-Sadoon MK, Arockiaraj J (2018) Radical scavenging property of a novel peptide derived from C-terminal SOD domain of superoxide dismutase enzyme in Arthrospira platensis. Algal Res 35:519–529. https://doi.org/10.1016/j.algal.2018.09.028

    Article  Google Scholar 

  132. Sannasimuthu A, Arockiaraj J (2019) Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. J Funct Foods 61:103513. https://doi.org/10.1016/j.jff.2019.103513

    CAS  Article  Google Scholar 

  133. Sannasimuthu A, Kumaresan V, Anilkumar S, Pasupuleti M, Ganesh M, Mala K, Paray BA, Al-Sadoon MK, Albeshr MF, Arockiaraj J (2019) Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic Biol Med 135:198–209. https://doi.org/10.1016/j.freeradbiomed.2019.03.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Sathyamoorthi A, Bhatt P, Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) Gene expression and in silico analysis of snakehead murrel interleukin 8 and antimicrobial activity of C-terminal derived peptide WS12. Vet Immunol Immunopathol 190:1–9. https://doi.org/10.1016/j.micres.2014.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Sathyamoorthi A, Kumaresan V, Palanisamy R, Pasupuleti M, Arasu MV, Al-Dhabi NA, Marimuthu K, Amin SMN, Arshad A, Yusoff FM, Arockiaraj J (2019) Therapeutic cationic antimicrobial peptide (CAP) derived from fish aspartic proteinase cathepsin D and its antimicrobial mechanism. Int J Pept Res Ther 25:93–105. https://doi.org/10.1007/s10989-017-9652-y

    CAS  Article  Google Scholar 

  136. Schuerholz T, Brandenburg K, Marx G (2012) Annual update in intensive care and emergency medicine. In: Vincent JL (ed) Annual update in intensive care and emergency medicine. Springer, Berlin. https://doi.org/10.1007/978-3-642-25716-2

  137. Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56. https://doi.org/10.1016/j.micpath.2017.11.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolym Pept Sci Sect 66:236–248. https://doi.org/10.1002/bip.10260

    CAS  Article  Google Scholar 

  139. Shin SC, Ahn IH, Ahn DH, Lee YM, Lee J, Lee JH, Kim HW, Park H (2017) Characterization of two antimicrobial peptides from antarctic fishes (Notothenia coriiceps and Parachaenichthys charcoti). PLoS ONE 12(1):e0170821. https://doi.org/10.1371/journal.pone.0170821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Silphaduang U, Colorni A, Noga EJ (2006) Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Dis Aquat Organ 72:241–252. https://doi.org/10.3354/dao072241

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Star B, Nederbragt A, Jentoft S (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210. https://doi.org/10.1038/nature10342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Sun BJ, Xie HX, Song Y, Nie P (2007) Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that moronecidins and pleurocidins belong in one family: the piscidins. J Fish Dis 30:335–343. https://doi.org/10.1111/j.1365-2761.2007.00789.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Sun D, Wu S, Jing C, Zhang N (2012) Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker. J Antibiot 65:117–121. https://doi.org/10.1038/ja.2011.120

    CAS  Article  Google Scholar 

  144. Sung WS, Lee J, Lee DG (2008) Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem Biophys Res Commun 371:551–555. https://doi.org/10.1016/j.bbrc.2008.04.107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Terova G, Forchino A, Rimoldi S, Brambilla F, Antonini M, Saroglia M (2009) Bio-Mos®: an effective inducer of dicentracin gene expression in European sea bass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 153(4):372–377. https://doi.org/10.1016/j.cbpb.2009.04.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. Thirumalai MK, Roy A, Sanikommu S, Arockiaraj J, Pasupuleti M (2014) A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli. J Pept Sci 20:341–348. https://doi.org/10.1002/psc.2619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Timalata K, Marimuthu K, Vengkades R, Xavier R, Rahman MA, Sreeramanan S, Arasu MV, Al-Dhabi NA, Arockiaraj J (2015) Elucidation of innate immune components in the epidermal mucus of different freshwater fish species. Acta Ichthyol Piscat 45(3):221–230. https://doi.org/10.3750/AIP2015.45.3.01

    Article  Google Scholar 

  148. Trobridge GD, Leong JAC (1995) Characterization of a Rainbow Trout Mx gene. J Interf Cytokine Res 15(8):691–702. https://doi.org/10.1089/jir.1995.15.691

    CAS  Article  Google Scholar 

  149. Wang KJ, Cai JJ, Cai L, Qu HD, Yang M, Zhang M (2009) Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides 30(4):638–646. https://doi.org/10.1016/j.peptides.2008.12.014.

    CAS  Article  Google Scholar 

  150. Wang YD, Kung CW, Chen JY (2010) Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides 31(6):1026–1033. https://doi.org/10.1016/j.peptides.2010.02.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Yan S, Wu G (2012) Structure, undefined function, and bioinformatics, analysis on folding of misgurin using two-dimensional HP model. Proteins 80(3):764–773. https://doi.org/10.1002/prot.23233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Yang J, Lu XJ, Chai FC, Chen J (2016) Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zool Res 37:347–355. https://doi.org/10.13918/j.issn.2095-8137.2016.6.347

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Yin Z, He W, Chen W, Yan J, Yang J (2006) Cloning, expression and antimicrobial activity of an antimicrobial peptide, epinecidin-1, from the orange-spotted grouper, Epinephelus coioides. Aquaculture 253(1–4):204–211. https://doi.org/10.1016/j.aquaculture.2005.10.002

    CAS  Article  Google Scholar 

  154. Yoshida K, Mukai Y, Niidome T, Takashi C, Tokunaga Y, Hatakeyama T, Aoyagi H (2001) Interaction of pleurocidin and its analogs with phospholipid membrane and their antibacterial activity. J Pept Res 57:119–126. https://doi.org/10.1034/j.1399-3011.2001.00802.x

    CAS  Article  Google Scholar 

  155. Zhou QJ, Su YQ, Niu SF, Liu M, Qiao Y, Wang J (2014) Discovery and molecular cloning of piscidin-5-like gene from the large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 41(2):417–420. https://doi.org/10.1016/j.fsi.2014.09.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. https://doi.org/10.1038/415389a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to perform this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research Involving Human and Animal Rights

No human sample or animal sample used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raju, S.V., Sarkar, P., Kumar, P. et al. Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 27, 91–107 (2021). https://doi.org/10.1007/s10989-020-10068-w

Download citation

Keywords

  • Piscidin
  • Fish antimicrobial peptide
  • Structure
  • Gene expression
  • Mode of action