In Silico Design of Epitope-Based Allergy Vaccine Against Bellatella germanica Cockroach Allergens

Abstract

Asthma is a chronic inflammatory airway disorder that is a subclass of IgE mediated hypersensitivity. Cockroach allergy is one of the main reasons of asthma. German cockroach (Blattella germanica) and American cockroach (Periplaneta Americana) are two principal species of cockroach. Bla g 2, Bla g 4, Bla g 5 and alpha-amylase 53 kDa are the known allergens of Blattella germanica that are used in this study to design the peptide allergy vaccine. In this study, with the help of immunoinformatics approaches, we try to design an efficient epitope vaccine against above-mentioned allergens. The designed vaccine consists of the common epitopes of T and B cells epitopes from the aforesaid allergens that are fused to each other by these two linkers; GGS and linker; moreover, to boost vaccine immunogenicity, the D1 of flagellin was added to N-terminal of vaccine. Afterwards, a 3D model of the final vaccine construct was generated using GalaxyWEB, and validated by ProSA-web, ERRAT and the Ramachandran plot softwares, in order to select the best 3D model. Finally, protein docking was performed between the flagellin part of vaccine and toll-like receptor 5 (TLR5). In sum, our obtained results from computational studies shows that the designed epitope vaccine can be suggested as a prophylactic or therapeutic candidate vaccine Blattella germanica cockroach’s allergens; however, the efficacy of vaccine should be confirmed by immunological assays.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arruda LK, Vailes LD, Ferriani VP, Santos ABR, Pomés A, Chapman MD (2001) Cockroach allergens and asthma. J Allergy Clin Immunol 107:419–428

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Yang HW, Wei JF, Tao AL (2014) In silico prediction of the T-cell and IgE-binding epitopes of Per a 6 and Bla g 6 allergens in cockroaches. Mol Med Rep 10:2130–2136

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Huang H, Wu CH (2017) Protein bioinformatics databases and resources. In: Frishman D, Valencia A (eds) Protein Bioinformatics. Springer, New York, pp 3–39

    Google Scholar 

  4. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33:W72–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cuadros C, Lopez-Hernandez FJ, Dominguez AL, McClelland M, Lustgarten J (2004) Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infect Immun 72:2810–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Do DC, Zhao Y, Gao P (2016) Cockroach allergen exposure and risk of asthma. Allergy 71:463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Incorvaia C, Riario-Sforza GG, Ridolo E (2017) IgE depletion in severe asthma: what we have and what could be added in the near future. EBioMedicine 17:16–17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan S et al (2007) Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J Biol Chem 282:21145–21159

    Article  CAS  PubMed  Google Scholar 

  11. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Livingston B, Crimi C, Newman M, Higashimoto Y, Appella E, Sidney J, Sette A (2002) A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 168:5499–5506

    Article  CAS  PubMed  Google Scholar 

  13. Lovell SC et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meloen RH, Langeveld JP, Schaaper WM, Slootstra JW (2001) Synthetic peptide vaccines: unexpected fulfillment of discarded hope? Biologicals 29:233–236

    Article  CAS  PubMed  Google Scholar 

  15. Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma. Mutat Res 690:24–39. https://doi.org/10.1016/j.mrfmmm.2009.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Negahdaripour M et al (2017) A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol 54:402–416

    Article  CAS  PubMed  Google Scholar 

  17. Negahdaripour M et al (2018) Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol 58:96–109

    Article  PubMed  Google Scholar 

  18. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform 10:296

    Article  CAS  Google Scholar 

  19. Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238

    Article  CAS  Google Scholar 

  20. Organization WA (2014) WAO white book on allergy update 2013. World Allergy Organization, Milwaukee

    Google Scholar 

  21. Pascal M, Konstantinou G, Masilamani M, Lieberman J, Sampson H (2013) In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin Exp Allergy 43:116–127

    Article  CAS  PubMed  Google Scholar 

  22. Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3:120139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pomés A (2008) Cockroach and other inhalant insect allergens. Clin Allergy Immunol 21:183

    PubMed  Google Scholar 

  24. Pomés A, Arruda LK (2014) Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients. Methods 66:75–85

    Article  CAS  PubMed  Google Scholar 

  25. Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK (2017) New insights into cockroach allergens. Curr Allergy Asthma Rep 17:25

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saha S, Raghava G (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schülke S et al (2011) A fusion protein of flagellin and ovalbumin suppresses the TH2 response and prevents murine intestinal allergy. J Allergy Clin Immunol 128(1340–1348):e1312

    Google Scholar 

  28. Shahbazi M, Haghkhah M, Rahbar MR, Nezafat N, Ghasemi Y (2016) In silico sub-unit hexavalent peptide vaccine against an Staphylococcus aureus biofilm-related infection. Int J Pept Res Ther 22:101–117

    Article  CAS  Google Scholar 

  29. Shin W-H, Lee GR, Heo L, Lee H, Seok C (2014) Prediction of protein structure and interaction by GALAXY protein modeling programs Bio Des 2:1–11

    Google Scholar 

  30. Teifoori F et al (2014) Identification of the main allergen sensitizers in an Iran asthmatic population by molecular diagnosis. Allergy Asthma Clin Immunol 10:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131:153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Torchala M, Bates PA (2014) Predicting the structure of protein–protein complexes using the SwarmDock web server. In: Kihar D (ed) Protein structure prediction. Springer, New York, pp 181–197

    Google Scholar 

  33. Valenta R, Ferreira F, Focke-Tejkl M, Linhart B, Niederberger V, Swoboda I, Vrtala S (2009) From allergen genes to allergy vaccines. Ann Rev Immunol 28:211–241

    Article  CAS  Google Scholar 

  34. Valenta R, Campana R, Niederberger V (2017) Recombinant allergy vaccines based on allergen-derived B cell epitopes. Immunol Lett 189:19–26. https://doi.org/10.1016/j.imlet.2017.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Shiraz University of Medical Sciences (16878) for supporting the conduct of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Navid Nezafat.

Ethics declarations

Conflict of interest

All the authors declare that they have none conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, F., Dorosti, H., Ghasemi, Y. et al. In Silico Design of Epitope-Based Allergy Vaccine Against Bellatella germanica Cockroach Allergens. Int J Pept Res Ther 26, 1739–1749 (2020). https://doi.org/10.1007/s10989-019-09980-7

Download citation

Keywords

  • In silico design
  • Epitope vaccine
  • Allergy
  • Bellatella germanica cockroach
  • Immunotherapy