Designing and Modeling of Multi-epitope Proteins for Diagnosis of Toxocara canis Infection

A Correction to this article is available

This article has been updated

Abstract

Serological investigation is the main method to achieve satisfactory results in Toxocara canis diagnosis. The accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize. Therefore significant efforts have been made to find alternative reagents as capture antigens. Multi-epitope peptides are potential diagnostic markers to improve the accuracy of diagnostic kits. The main aim of this study is the prediction and design of a novel synthetic protein consisting of multiple immunodominant B cell epitopes by Use of three proteins TES-120, TES-30, and TES-26 of T. canis. Primary, secondary and tertiary structures of the proteins were analyzed by using several various online software (ExPasy, IEDB, ABCpred, SVMTriP). Then, B cell construct was assessed by machine learning and Physico-chemical approaches and finally, homology modeling of 3D structure of protein was evaluated. The results of in silico analyses indicated that regions with high immunogenicity for TES-120 protein are located at between residues 97–167, for TES-30 protein are in the residues 52–102, 172–207 and for TES-26 are in the residues 33–83, 130–180. These regions could have good potential features for designing the Multi-epitopes. Finally, selected epitopes were linked to each other by linkers. The average length of the constructs was 342 bp. Also, the high proportion of random coils and extended strands in construct suggest that the protein form antigenic epitopes. Expasy ProtParam classified the constructs with moderate stability and 56.2% residues of constructs were located in favored regions of the Ramachandran plot. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide can laid a theoretical basis to develop an appropriate diagnostic kit for human toxocariasis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 08 November 2019

    The original version of this article unfortunately contained an error in the co-author name and also the Acknowledgement section was not included.

References

  1. Aghaei S, Riahi SM, Rostami A, Mohammadzadeh I, Javanian M, Tohidi E et al (2018) Toxocara spp. infection and risk of childhood asthma: a systematic review and meta-analysis. Acta Trop 182:298–304

    PubMed  PubMed Central  Google Scholar 

  2. Aghamolaie S, Seyyedtabaei SJ, Behniafar H, Foroutan M, Saber V, Hanifehpur H et al (2018) Seroepidemiology, modifiable risk factors and clinical symptoms of Toxocara spp. infection in Northern Iran. Trans R Soc Trop Med Hyg 113:116–122

    Google Scholar 

  3. Baneth G, Thamsborg SM, Otranto D, Guillot J, Blaga R, Deplazes P et al (2016) Major parasitic zoonoses associated with dogs and cats in Europe. J Comp Pathol 155(1 Suppl 1):S54–S74

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9(12):971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66(4):778–795

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai JF, Jiang M, Qu LL, Sun L, Wang YY, Gong LL et al (2013) Toxoplasma gondii: enzyme-linked immunosorbent assay based on a recombinant multi-epitope peptide for distinguishing recent from past infection in human sera. Exp Parasitol 133(1):95–100

    CAS  PubMed  PubMed Central  Google Scholar 

  7. DeLano WL (2002) The PyMOL molecular graphics system. San Carlos, DeLano Scientific, p 700

    Google Scholar 

  8. Despommier D (2005) Toxocariasis: clinical aspects, epidemiological, medical ecology and molecular aspects. Clin Microbiol Rev 16:265–272

    Google Scholar 

  9. Dipti CA, Jain SK, Navin K (2006) A novel recombinant multiepitope protein as a hepatitis C diagnostic intermediate of high sensitivity and specificity. Protein Expr Purif 47(1):319–328

    CAS  Google Scholar 

  10. Dorosti H, Eslami M, Negahdaripour M, Ghoshoon MB, Gholami A, Heidari R et al (2019) Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn 37(13):3524–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fakhri Y, Gasser R, Rostami A, Fan C, Ghasemi S, Javanian M et al (2018) Toxocara eggs in public places worldwide—a systematic review and meta-analysis. Environ Pollut 242:1467–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fong MY, Lau YL (2004) Recombinant expression of the larval excretory-secretory antigen TES-120 of Toxocara canis in the methylotrophic yeast Pichia pastoris. Parasitol Res 92(2):173–176

    PubMed  PubMed Central  Google Scholar 

  13. Fong MY, Lau YL, Init I, Jamaiah I, Anuar AK, Rahmah N (2003) Recombinant expression of Toxocara canis excretory-secretory antigen TES-120 in Escherichia coli. Southeast Asian J Trop Med Public Health 34(4):723–726

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frank SA (2002) Immunology and evolution of infectious disease. Princeton, Princeton University Press

    Google Scholar 

  15. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hajissa K, Zakaria R, Suppian R, Mohamed Z (2015) Design and evaluation of a recombinant multi-epitope antigen for serodiagnosis of Toxoplasma gondii infection in humans. Parasit Vectors 8:315

    PubMed  PubMed Central  Google Scholar 

  18. Kalwy S, Rance J, Young R (2006) Toward more efficient protein expression: keep the message simple. Mol Biotechnol 34(2):151–156

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM (2014) Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines 13(1):155–173

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    CAS  Google Scholar 

  22. Kulkarni R, Sapkal G, Mahishi L, Shil P, Gore MM (2012) Design and characterization of polytope construct with multiple B and TH epitopes of Japanese encephalitis virus. Virus Res 166(1–2):77–86

    CAS  Google Scholar 

  23. Lv C, Hong Y, Fu Z, Lu K, Cao X, Wang T et al (2016) Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay. Parasit Vectors 9:135

    PubMed  PubMed Central  Google Scholar 

  24. Maizels RM, de Savigny D, Ogilvie BM (1984) Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasit Immunol 6(1):23–37

    CAS  Google Scholar 

  25. Maizels RM, Kennedy MW, Meghji M, Robertson BD, Smith HV (1987) Shared carbohydrate epitopes on distinct surface and secreted antigens of the parasitic nematode Toxocara canis. J Immunol 139(1):207–214

    CAS  Google Scholar 

  26. Mohamad S, Azmi NC, Noordin R (2009) Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120). J Clin Microbiol 47(6):1712–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohammadzadeh I, Riahi SM, Saber V, Darvish S, Amrovani M, Arefkhah N et al (2018) The relationship between Toxocara species seropositivity and allergic skin disorders: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg 112(12):529–537

    Google Scholar 

  28. Noordin R, Smith HV, Mohamad S, Maizels RM, Fong MY (2005) Comparison of IgG-ELISA and IgG4-ELISA for Toxocara serodiagnosis. Acta Trop 93(1):57–62

    CAS  Google Scholar 

  29. Norhaida A, Suharni M, Liza Sharmini AT, Tuda J, Rahmah N (2008) rTES-30USM: cloning via assembly PCR, expression, and evaluation of usefulness in the detection of toxocariasis. Ann Trop Med Parasitol 102(2):151–160

    CAS  Google Scholar 

  30. Overgaauw PA (1997) Aspects of Toxocara epidemiology: human toxocarosis. Crit Rev Microbiol 23(3):215–231

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pruess M, Apweiler R (2003) Bioinformatics Resources for in silico proteome analysis. J Biomed Biotechnol 2003(4):231–236

    PubMed  PubMed Central  Google Scholar 

  32. Ramakrishna L, Anand KK, Mohankumar KM, Ranga U (2004) Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol 78(17):9174–9189 Epub 2004/08/17

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roldan WH, Espinoza YA (2009) Evaluation of an enzyme-linked immunoelectrotransfer blot test for the confirmatory serodiagnosis of human toxocariasis. Mem Inst Oswaldo Cruz 104(3):411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubinsky-Elefant G, Hirata CE, Yamamoto JH, Ferreira MU (2010) Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann Trop Med Parasitol 104(1):3–23

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Saadi M, Karkhah A, Nouri HR (2017) Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect Genet Evol 51:227–234

    CAS  Google Scholar 

  37. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genom 6:79

    Google Scholar 

  38. Sandhu KS, Pandey S, Maiti S, Pillai B (2008) GASCO: genetic algorithm simulation for codon optimization. In Silico Biol 8(2):187–192

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302

    PubMed  PubMed Central  Google Scholar 

  40. Singh H, Ansari HR, Raghava GP (2013) Improved method for linear B-cell epitope prediction using antigen's primary sequence. PLoS ONE 8(5):e62216

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Siyadatpanah A, Tabatabaei F, Zeydi AE, Spotin A, Fallah-Omrani V, Assadi M et al (2013) Parasitic contamination of raw vegetables in Amol North of Iran. Arch Clin Infect Dis 8(2):e15983

    Google Scholar 

  42. Smith H, Holland C, Taylor M, Magnaval JF, Schantz P, Maizels R (2009) How common is human toxocariasis? Towards standardizing our knowledge. Trends Parasitol 25(4):182–188

    Google Scholar 

  43. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Google Scholar 

  44. Yamasaki H, Araki K, Lim PK, Zasmy N, Mak JW, Taib R et al (2000) Development of a highly specific recombinant Toxocara canis second-stage larva excretory-secretory antigen for immunodiagnosis of human toxocariasis. J Clin Microbiol 38(4):1409–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang ZR (2004) Biological applications of support vector machines. Brief Bioinform 5(4):328–338

    CAS  Google Scholar 

  46. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J (2011) Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinform 12:341

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyyed Javad Seyyedtabaei.

Ethics declarations

Conflict interest

All authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised: The co-author name should be Amirreza Javadi Mamaghani instead it was published incorrectly as Amir Javadi-Mamaghani.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Seyyedtabaei, S.J., Ranjbar, M.M. et al. Designing and Modeling of Multi-epitope Proteins for Diagnosis of Toxocara canis Infection. Int J Pept Res Ther 26, 1371–1380 (2020). https://doi.org/10.1007/s10989-019-09940-1

Download citation

Keywords

  • Multi-epitope
  • Synthetic gene
  • Toxocara canis
  • Bioinformatics softwar