Skip to main content

Advertisement

Log in

Progresses in Predicting Post-translational Modification

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Identification of the sites of post-translational modifications (PTMs) in protein, RNA, and DNA sequences is currently a very hot topic. This is because the information thus obtained is very useful for in-depth understanding the biological processes at the cellular level and for developing effective drugs against major diseases including cancers as well. Although this can be done by means of various experimental techniques, it is both time-consuming and costly to determine the PTM sites purely based on experiments. With the avalanche of biological sequences generated in the post-genomic age, it is highly desired to develop bioinformatics tools for rapidly and effectively identifying the PTM sites. In the last few years, many efforts have been made in this regard, and considerable progresses have been achieved. This review is focused on those prediction methods that have the following two features. (1) They have been developed by strictly observing the 5-steps rule so that they each have a user-friendly web-server for the majority of experimental scientists to easily get their desired data without the need to go through the detailed mathematics involved. (2) Their cornerstones have been based on Pseudo Amino Acid Composition (PseAAC) or Pseudo K-tuple Nucleotide Composition (PseKNC), and hence the prediction quality is generally higher than most of the other PTM prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adilina S, Farid DM, Shatabda S (2019) Effective DNA binding protein prediction by using key features via Chou’s general PseAAC. J Theor Biol 460:64–78

    CAS  PubMed  Google Scholar 

  • Ahmad J, Hayat M (2018) MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components. J Theor Biol 463:99–109

    PubMed  Google Scholar 

  • Ahmad J, Hayat M (2019) MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components. J Theor Biol 463:99–109

    CAS  PubMed  Google Scholar 

  • Ahmad S, Kabir M, Hayat M (2015) Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou’s general PseAAC. Comput Methods Programs Biomed 122:165–174

    PubMed  Google Scholar 

  • Ahmad K, Waris M, Hayat M (2016) Prediction of protein submitochondrial locations by incorporating dipeptide composition into Chou’s general pseudo amino acid composition. J Membr Biol 249:293–304

    CAS  PubMed  Google Scholar 

  • Akbar S, Hayat M (2018) iMethyl-STTNC: identification of N(6)-methyladenosine sites by extending the Idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J Theor Biol 455:205–211

    CAS  PubMed  Google Scholar 

  • Al Maruf MA, Shatabda S (2018) iRSpot-SF: prediction of recombination hotspots by incorporating sequence based features into Chou’s Pseudo components. Genomics. https://doi.org/10.1016/j.ygeno.2018.06.003

    Article  PubMed  Google Scholar 

  • Ali F, Hayat M (2015) Classification of membrane protein types using voting feature interval in combination with Chou’s pseudo amino acid composition. J Theor Biol 384:78–83

    CAS  PubMed  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993a) Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem 268:6119–6124

    CAS  PubMed  Google Scholar 

  • Althaus IW, Gonzales AJ, Chou JJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993b) The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268:14875–14880

    CAS  PubMed  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993c) Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry 32:6548–6554

    CAS  PubMed  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1994a) Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. Cell Mol Life Sci (Experientia) 50:23–28

    CAS  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Thomas RC, Aristoff PA, Tarpley WG, Reusser F (1994b) Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152e. Biochem Pharmacol 47:2017–2028

    CAS  PubMed  Google Scholar 

  • Althaus IW, Franks KM, Diebel MR, Kezdy FJ, Romero DL, Thomas RC, Aristoff PA, Tarpley WG, Reusser F (1996) The benzylthio-pyrididine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem Pharmacol 51:743–750

    CAS  PubMed  Google Scholar 

  • Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can J Chem 86:342–357

    CAS  Google Scholar 

  • Arif M, Hayat M, Jan Z (2018) iMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition. J Theor Biol 442:11–21

    CAS  PubMed  Google Scholar 

  • Awais M, Hussain W, Khan YD, Rasool N, Khan SA (2019) iPhosH-PseAAC: Identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the Chou’s 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/tcbb.2019.2919025

    Article  Google Scholar 

  • Behbahani M, Mohabatkar H, Nosrati M (2016) Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J Theor Biol 411:1–5

    CAS  PubMed  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruschweiler S, Yang Q, Run C, Chou JJ (2015) Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion. Nat Struct Mol Biol 22:636–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AH, Rasool N, Khan YD (2018) Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4391-5

    Article  PubMed  Google Scholar 

  • Butt AH, Rasool N, Khan YD (2019) Prediction of antioxidant proteins by incorporating statistical moments based features into Chou’s PseAAC. J Theor Biol 473:1–8

    CAS  PubMed  Google Scholar 

  • Cai YD, Feng KY, Lu WC (2006) Using LogitBoost classifier to predict protein structural classes. J Theor Biol 238:172–176

    CAS  PubMed  Google Scholar 

  • Cai L, Wan CL, He L, Jong S (2015) Gestational influenza increases the risk of psychosis in adults. Med Chem 11:676–682

    CAS  PubMed  Google Scholar 

  • Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JZ, Liu WQ, Gu H (2012) Predicting viral protein subcellular localization with Chou’s Pseudo amino acid composition and imbalance-weighted multi-label K-nearest neighbor algorithm. Protein Pept Lett 19:1163–1169

    CAS  PubMed  Google Scholar 

  • Cao DS, Xu QS, Liang YZ (2013) Propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962

    CAS  PubMed  Google Scholar 

  • Cao C, Wang S, Cui T, Su XC, Chou JJ (2017) Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter. Proc Natl Acad Sci USA 114:E2846–E2851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter RE, Forsen S (1981) A new graphical method for deriving rate equations for complicated mechanisms. Chem Scr 18:82–86

    Google Scholar 

  • Chandra A, Sharma A, Dehzangi A, Ranganathan S, Jokhan A, Tsunoda T (2018) PhoglyStruct: prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Sci Rep 8:17923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TH, Wu LC, Lee TY, Chen SP, Huang HD, Horng JT (2013) EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou’s PseAAC. J Comput Aided Mol Des 27:91–103

    CAS  PubMed  Google Scholar 

  • Chen NY, Forsen S (1981) The biological functions of low-frequency phonons: 2. Cooperative effects. Chem Scr 18:126–132

    Google Scholar 

  • Chen YK, Li KB (2013) Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition. J Theor Biol 318:1–12

    CAS  PubMed  Google Scholar 

  • Chen W, Lin H (2015) Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst 11:2620–2634

    CAS  PubMed  Google Scholar 

  • Chen J, Liu H, Yang J (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    CAS  PubMed  Google Scholar 

  • Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein Pept Lett 16:27–31

    PubMed  Google Scholar 

  • Chen W, Lin H, Feng PM, Ding C, Zuo YC (2012a) iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS ONE 7:e47843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Shen ZB, Zou XY (2012b) Dual-layer wavelet SVM for predicting protein structural class via the general form of Chou’s pseudo amino acid composition. Protein Pept Lett 19:422–429

    CAS  PubMed  Google Scholar 

  • Chen W, Feng PM, Lin H (2013) iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 41:e68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Lei TY, Jin DC, Lin H (2014a) PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal Biochem 456:53–60

    CAS  PubMed  Google Scholar 

  • Chen W, Feng PM, Deng EZ, Lin H (2014b) iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem 462:76–83

    CAS  PubMed  Google Scholar 

  • Chen W, Feng PM, Lin H (2014c) iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. Biomed Res Int (BMRI) 2014:623149

    Google Scholar 

  • Chen W, Zhang X, Brooker J, Lin H, Zhang L (2015a) PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics 31:119–120

    CAS  PubMed  Google Scholar 

  • Chen W, Feng P, Ding H, Lin H (2015b) iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 490:26–33

    CAS  PubMed  Google Scholar 

  • Chen W, Tang H, Ye J, Lin H (2016a) iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 5:e332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Ding H, Feng P, Lin H (2016b) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7:16895–16909

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Feng P, Ding H, Lin H (2016c) Using deformation energy to analyze nucleosome positioning in genomes. Genomics 107:69–75

    CAS  PubMed  Google Scholar 

  • Chen W, Feng P, Yang H, Ding H, Lin H (2017) iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget 8:4208–4217

    PubMed  Google Scholar 

  • Chen W, Ding H, Zhou X, Lin H (2018a) iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 561–562:59–65

    PubMed  Google Scholar 

  • Chen W, Feng P, Yang H, Ding H, Lin H (2018b) iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites. Molecular Therapy: Nucleic Acid 11:468–474

    CAS  Google Scholar 

  • Chen Z, Liu X, Li F, Li C, Marquez-Lago T, Leier A, Akutsu T, Webb GI, Xu D, Smith AI, Li L, Song J (2018c) Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief Bioinform. https://doi.org/10.1093/bib/bby089

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhao PY, Li F, Leier A, Marquez-Lago TT, Wang Y, Webb GI, Smith AI, Daly RJ, Song J (2018d) iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34:2499–2502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Cao M, Yu J, Guo X, Shi S (2019) Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC. J Theor Biol 461:92–101

    CAS  PubMed  Google Scholar 

  • Cheng X, Xiao X (2017a) pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol BioSyst 13:1722–1727

    CAS  PubMed  Google Scholar 

  • Cheng X, Xiao X (2017b) pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene (Erratum: ibid., 2018, Vol.644, 156–156) 628: 315–321

  • Cheng X, Xiao X (2018a) pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 110:50–58

    CAS  PubMed  Google Scholar 

  • Cheng X, Xiao X (2018b) pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 110:231–239

    CAS  Google Scholar 

  • Cheng X, Xiao X (2018c) pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 34:1448–1456

    CAS  PubMed  Google Scholar 

  • Cheng X, Xiao X (2018d) pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J Theor Biol 458:92–102

    CAS  PubMed  Google Scholar 

  • Cheng X, Xiao X (2018e) pLoc_bal-mPlant: predict subcellular localization of plant proteins by general PseAAC and balancing training dataset. Curr Pharm Des 24:4013–4022

    CAS  PubMed  Google Scholar 

  • Cheng X, Zhao SG, Lin WZ, Xiao X (2017a) pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics 33:3524–3531

    CAS  PubMed  Google Scholar 

  • Cheng X, Zhao SG, Xiao X (2017b) iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics (Corrigendum, ibid., 2017, Vol.33, 2610) 33: 341–346

  • Cheng X, Zhao SG, Xiao X (2017c) iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget 8:58494–58503

    PubMed  PubMed Central  Google Scholar 

  • Cheng X, Lin WZ, Xiao X (2019) pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics 35:398–406

    CAS  PubMed  Google Scholar 

  • Chou KC (1989) Graphic rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079

    CAS  PubMed  Google Scholar 

  • Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35:1–24

    CAS  PubMed  Google Scholar 

  • Chou KC (2001a) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: structure, function, and genetics (Erratum: ibid., 2001, Vol. 44, 60) 43: 246–255

  • Chou KC (2001b) Prediction of protein signal sequences and their cleavage sites. Proteins 42:136–139

    CAS  PubMed  Google Scholar 

  • Chou KC (2001c) Using subsite coupling to predict signal peptides. Protein Eng 14:75–79

    CAS  PubMed  Google Scholar 

  • Chou KC (2001d) Prediction of signal peptides using scaled window. Peptides 22:1973–1979

    CAS  PubMed  Google Scholar 

  • Chou KC (2004a) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun (BBRC) 319:433–438

    CAS  Google Scholar 

  • Chou KC (2004b) Insights from modelling the tertiary structure of BACE2. J Proteome Res 3:1069–1072

    CAS  PubMed  Google Scholar 

  • Chou KC (2004c) Insights from modelling three-dimensional structures of the human potassium and sodium channels. J Proteome Res 3:856–861

    CAS  PubMed  Google Scholar 

  • Chou KC (2004d) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    CAS  PubMed  Google Scholar 

  • Chou KC (2005a) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4:1681–1686

    CAS  PubMed  Google Scholar 

  • Chou KC (2005b) Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun (BBRC) 331:56–60

    CAS  Google Scholar 

  • Chou KC (2005c) Insights from modeling the 3D structure of DNA-CBF3b complex. J Proteome Res 4:1657–1660

    CAS  PubMed  Google Scholar 

  • Chou KC (2005d) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  PubMed  Google Scholar 

  • Chou KC (2005e) Review: progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr Protein Pept Sci 6:423–436

    CAS  PubMed  Google Scholar 

  • Chou KC (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteom 6:262–274

    CAS  Google Scholar 

  • Chou KC (2010) Graphic rule for drug metabolism systems. Curr Drug Metab 11:369–378

    CAS  PubMed  Google Scholar 

  • Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review, 5-steps rule). J Theor Biol 273:236–247

    CAS  PubMed  Google Scholar 

  • Chou KC (2013) Some remarks on predicting multi-label attributes in molecular biosystems. Mol BioSyst 9:1092–1100

    CAS  PubMed  Google Scholar 

  • Chou KC (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234

    CAS  PubMed  Google Scholar 

  • Chou KC (2017) An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem 17:2337–2358

    CAS  PubMed  Google Scholar 

  • Chou KC (2019) Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr Med Chem. https://doi.org/10.2174/0929867326666190507082559

    Article  PubMed  Google Scholar 

  • Chou KC, Cai YD (2003) Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition. J Cell Biochem (Addendum, ibid. 2004, 91, 1085) 90: 1250–1260

  • Chou KC, Elrod DW (2002) Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 1:429–433

    CAS  PubMed  Google Scholar 

  • Chou KC, Forsen S (1980a) Diffusion-controlled effects in reversible enzymatic fast reaction system: critical spherical shell and proximity rate constants. Biophys Chem 12:255–263

    CAS  PubMed  Google Scholar 

  • Chou KC, Forsen S (1980b) Graphical rules for enzyme-catalyzed rate laws. Biochem J 187:829–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KC, Forsen S (1981) Graphical rules of steady-state reaction systems. Can J Chem 59:737–755

    Google Scholar 

  • Chou KC, Howe WJ (2002) Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun (BBRC) 292:702–708

    CAS  Google Scholar 

  • Chou KC, Shen HB (2009) FoldRate: a web-server for predicting protein folding rates from primary sequence. Open Bioinf J 3:31–50

    CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    CAS  PubMed  Google Scholar 

  • Chou KC, Jiang SP, Liu WM, Fee CH (1979) Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci Sinica 22:341–358

    CAS  Google Scholar 

  • Chou KC, Kezdy FJ, Reusser F (1994) Review: kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221:217–230

    CAS  PubMed  Google Scholar 

  • Chou KC, Jones D, Heinrikson RL (1997) Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett 419:49–54

    CAS  PubMed  Google Scholar 

  • Chou JJ, Matsuo H, Duan H, Wagner G (1998) Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94:171–180

    CAS  PubMed  Google Scholar 

  • Chou JJ, Li H, Salvessen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signalling. Cell 96:615–624

    CAS  PubMed  Google Scholar 

  • Chou KC, Tomasselli AG, Heinrikson RL (2000) Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett 470:249–256

    CAS  PubMed  Google Scholar 

  • Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nature Structural Biology 8:990–997

    CAS  PubMed  Google Scholar 

  • Chou KC, Lin WZ, Xiao X (2011) Wenxiang: a web-server for drawing wenxiang diagrams. Nat Sci 3:862–865

    CAS  Google Scholar 

  • Chou KC, Cheng X, Xiao X (2018) pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics. https://doi.org/10.1016/j.ygeno.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras-Torres E (2018) Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC. J Theor Biol 454:139–145

    CAS  PubMed  Google Scholar 

  • Cui X, Yu Z, Yu B, Wang M, Tian B, Ma Q (2018) UbiSitePred: a novel method for improving the accuracy of ubiquitination sites prediction by using LASSO to select the optimal Chou’s pseudo components. Chemom Intell Lab Syst (CHEMOLAB). https://doi.org/10.1016/j.chemolab.2018.11.012

    Article  Google Scholar 

  • Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A (2015) Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou’s general PseAAC. J Theor Biol 364:284–294

    CAS  PubMed  Google Scholar 

  • Dev J, Park D, Fu Q, Chen J, Ha HJ, Ghantous F, Herrmann T, Chang W, Liu Z, Frey G, Seaman MS, Chen B, Chou JJ (2016) Structural basis for membrane anchoring of HIV-1 envelope spike. Science 353:172–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recogn Lett 29:1887–1892

    CAS  Google Scholar 

  • Ding H, Luo L, Lin H (2009) Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition. Protein Pept Lett 16:351–355

    CAS  PubMed  Google Scholar 

  • Ding H, Deng EZ, Yuan LF, Liu L, Lin H, Chen W (2014) iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int (BMRI) 2014:286419

    Google Scholar 

  • Du P, Wang X, Xu C, Gao Y (2012) PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou’s pseudo amino acid compositions. Anal Biochem 425:117–119

    CAS  PubMed  Google Scholar 

  • Du P, Gu S, Jiao Y (2014) PseAAC-General: fast building various modes of general form of Chou’s pseudo amino acid composition for large-scale protein datasets. Int J Mol Sci 15:3495–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsan A, Mahmood K, Khan YD, Khan SA (2018) A novel modeling in mathematical biology for classification of signal peptides. Sci Rep 8:1039

    PubMed  PubMed Central  Google Scholar 

  • Ehsan A, Mahmood MK, Khan YD, Barukab OM, Khan SA (2019) iHyd-PseAAC (EPSV): identify hydroxylation sites in proteins by extracting enhanced position and sequence variant feature via Chou’s 5-step rule and general pseudo amino acid composition. Curr Genomics 20:124–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 263:203–209

    CAS  PubMed  Google Scholar 

  • Fan GL, Li QZ (2012a) Predict mycobacterial proteins subcellular locations by incorporating pseudo-average chemical shift into the general form of Chou’s pseudo amino acid composition. J Theor Biol 304:88–95

    CAS  PubMed  Google Scholar 

  • Fan GL, Li QZ (2012b) Predicting protein submitochondria locations by combining different descriptors into the general form of Chou’s pseudo amino acid composition. Amino Acids 43:545–555

    CAS  PubMed  Google Scholar 

  • Fan GL, Li QZ (2013) Discriminating bioluminescent proteins by incorporating average chemical shift and evolutionary information into the general form of Chou’s pseudo amino acid composition. J Theor Biol 334:45–51

    CAS  PubMed  Google Scholar 

  • Fan G-L, Li Q-Z, Zuo Y-C (2013) Predicting acidic and alkaline enzymes by incorporating the average chemical shift and gene ontology informations into the general form of Chou’s PseAAC. Process Biochem 48:1048–1053

    CAS  Google Scholar 

  • Fan YN, Xiao X, Min JL (2014) iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking. Int J Mol Sci (IJMS) 15:4915–4937

    Google Scholar 

  • Fan GL, Zhang XY, Liu YL, Nang Y, Wang H (2015) DSPMP: discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou’s pseudo amino acid patterns. J Comput Chem 36:2317–2327

    CAS  PubMed  Google Scholar 

  • Fan GL, Liu YL, Wang H (2016) Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou’s general pseudo amino acid composition. J Theor Biol 407:138–142

    CAS  PubMed  Google Scholar 

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34:103–109

    CAS  PubMed  Google Scholar 

  • Feng P, Ding H, Yang H, Chen W, Lin H (2017) iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol Ther Nucleic Acids 7:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Yang H, Ding H, Lin H, Chen W (2019) iDNA6 mA-PseKNC: identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 111:96–102

    CAS  PubMed  Google Scholar 

  • Forsen S, Zhou GQ (1980) Three schematic rules for deriving apparent rate constants. Chem Scr 16:109–113

    Google Scholar 

  • Fu Q, Fu TM, Cruz AC, Sengupta P, Thomas SK, Wang S, Siegel RM, Wu H, Chou JJ (2016) Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol Cell 61:602–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Zhu W, Liso B, Cai L, Peng L, Yang J (2018) Improved DNA-binding protein identification by incorporating evolutionary information into the Chou’s PseAAC. IEEE Access 20 https://doi.org/10.1109/access.2018.2876656

  • Gagnon E, Xu C, Yang W, Chu HH, Call ME, Chou JJ, Wucherpfennig KW (2010) Response multilayered control of T cell receptor phosphorylation. Cell 142:669–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou DN, Karakasidis TE, Nieto JJ, Torres A (2009) Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. J Theor Biol 257:17–26

    CAS  PubMed  Google Scholar 

  • Georgiou DN, Karakasidis TE, Megaritis AC (2013) A short survey on genetic sequences, Chou’s pseudo amino acid composition and its combination with fuzzy set theory. Open Bioinf J 7:41–48

    CAS  Google Scholar 

  • Ghauri AW, Khan YD, Rasool N, Khan SA (2018) pNitro-Tyr-PseAAC: predict nitrotyrosine sites in proteins by incorporating five features into Chou’s general PseAAC. Curr Pharm Des 24:4034–4043

    CAS  PubMed  Google Scholar 

  • Gu Q, Ding YS, Zhang TL (2010) Prediction of G-protein-coupled receptor classes in low homology using Chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein Pept Lett 17:559–567

    CAS  PubMed  Google Scholar 

  • Guo J, Rao N, Liu G, Yang Y, Wang G (2011) Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. J Comput Chem 32:1612–1617

    CAS  PubMed  Google Scholar 

  • Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W (2014) iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 30:1522–1529

    CAS  PubMed  Google Scholar 

  • Gupta MK, Niyogi R, Misra M (2013) An alignment-free method to find similarity among protein sequences via the general form of Chou’s pseudo amino acid composition. SAR QSAR Environ Res 24:597–609

    CAS  PubMed  Google Scholar 

  • Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H (2014) Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 341:34–40

    CAS  PubMed  Google Scholar 

  • Han GS, Yu ZG, Anh V (2014) A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou’s PseAAC. J Theor Biol 344:31–39

    CAS  PubMed  Google Scholar 

  • Hayat M, Iqbal N (2014) Discriminating protein structure classes by incorporating Pseudo average chemical shift to Chou’s general PseAAC and support vector machine. Comput Methods Programs Biomed 116:184–192

    PubMed  Google Scholar 

  • Hayat M, Khan A (2012) Discriminating outer membrane proteins with Fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein Pept Lett 19:411–421

    CAS  PubMed  Google Scholar 

  • Hu L, Huang T, Shi X, Lu WC, Cai YD (2011) Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS ONE 6:e14556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Yuan J (2013a) Using radial basis function on the general form of Chou’s pseudo amino acid composition and PSSM to predict subcellular locations of proteins with both single and multiple sites. Biosystems 113:50–57

    CAS  PubMed  Google Scholar 

  • Huang C, Yuan JQ (2013b) A multilabel model based on Chou’s pseudo amino acid composition for identifying membrane proteins with both single and multiple functional types. J Membr Biol 246:327–334

    CAS  PubMed  Google Scholar 

  • Huang C, Yuan JQ (2013c) Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou’s pseudo amino acid compositions. J Theor Biol 335:205–212

    CAS  PubMed  Google Scholar 

  • Huang C, Yuan JQ (2015) Simultaneously identify three different attributes of proteins by fusing their three different modes of Chou’s pseudo amino acid compositions. Protein Pept Lett 22:547–556

    CAS  PubMed  Google Scholar 

  • Huo H, Li T, Wang S, Lv Y, Zuo Y, Yang L (2017) Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou’s pseudo components. Sci Rep 7:5827

    PubMed  PubMed Central  Google Scholar 

  • Hussain W, Khan SD, Rasool N, Khan SA (2019a) SPalmitoylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal Biochem 568:14–23

    CAS  PubMed  Google Scholar 

  • Hussain W, Khan YD, Rasool N, Khan SA (2019b) SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 468:1–11

    CAS  PubMed  Google Scholar 

  • Javed F, Hayat M (2018) Predicting subcellular localizations of multi-label proteins by incorporating the sequence features into Chou’s PseAAC. Genomics. https://doi.org/10.1016/j.ygeno.2018.09.004

    Article  PubMed  Google Scholar 

  • Jia C, Lin X, Wang Z (2014) Prediction of protein S-nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou’s pseudo amino acid composition. Int J Mol Sci 15:10410–10423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Liu Z, Xiao X (2015) iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol 377:47–56

    CAS  PubMed  Google Scholar 

  • Jia J, Liu Z, Xiao X, Liu B (2016a) iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem 497:48–56

    CAS  PubMed  Google Scholar 

  • Jia J, Liu Z, Xiao X, Liu B (2016b) pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 394:223–230

    CAS  PubMed  Google Scholar 

  • Jia J, Liu Z, Xiao X, Liu B (2016c) iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 7:34558–34570

    PubMed  PubMed Central  Google Scholar 

  • Jia J, Zhang L, Liu Z, Xiao X (2016d) pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics 32:3133–3141

    CAS  PubMed  Google Scholar 

  • Jia J, Liu Z, Xiao X, Liu B (2016e) Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J Biomol Struct Dyn (JBSD) 34:1946–1961

    CAS  Google Scholar 

  • Jia J, Liu Z, Xiao X, Liu B (2016f) iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules 21:E95

    PubMed  Google Scholar 

  • Jia J, Li X, Qiu W, Xiao X (2019) iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 460:195–203

    CAS  PubMed  Google Scholar 

  • Jiang X, Wei R, Zhang TL, Gu Q (2008a) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein Pept Lett 15:392–396

    CAS  PubMed  Google Scholar 

  • Jiang X, Wei R, Zhao Y, Zhang T (2008b) Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location. Amino Acids 34:669–675

    CAS  PubMed  Google Scholar 

  • Jiao YS, Du PF (2016) Prediction of Golgi-resident protein types using general form of Chou’s pseudo amino acid compositions: approaches with minimal redundancy maximal relevance feature selection. J Theor Biol 402:38–44

    CAS  PubMed  Google Scholar 

  • Jiao YS, Du PF (2017) Predicting protein submitochondrial locations by incorporating the positional-specific physicochemical properties into Chou’s general pseudo-amino acid compositions. J Theor Biol 416:81–87

    CAS  PubMed  Google Scholar 

  • Ju Z, He JJ (2017a) Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J Mol Graph Model 77:200–204

    CAS  PubMed  Google Scholar 

  • Ju Z, He JJ (2017b) Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC. J Mol Graph Model 76:356–363

    CAS  PubMed  Google Scholar 

  • Ju Z, Wang SY (2018) Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene 664:78–83

    CAS  PubMed  Google Scholar 

  • Ju Z, Cao JZ, Gu H (2015) iLM-2L: a two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chous general PseAAC. J Theor Biol 385:50–57

    PubMed  Google Scholar 

  • Ju Z, Cao JZ, Gu H (2016) Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou’s general PseAAC. J Theor Biol 397:145–150

    CAS  PubMed  Google Scholar 

  • Kabir M, Hayat M (2016) iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples. Mol Genet Genomics 291:285–296

    CAS  PubMed  Google Scholar 

  • Kabir M, Ahmad S, Iqbal M, Hayat M (2019) iNR-2L: a two-level sequence-based predictor developed via Chou’s 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics. https://doi.org/10.1016/j.ygeno.2019.02.006

    Article  PubMed  Google Scholar 

  • Khan ZU, Hayat M, Khan MA (2015) Discrimination of acidic and alkaline enzyme using Chou’s pseudo amino acid composition in conjunction with probabilistic neural network model. J Theor Biol 365:197–203

    CAS  PubMed  Google Scholar 

  • Khan M, Hayat M, Khan SA, Iqbal N (2017) Unb-DPC: identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou’s general PseAAC. J Theor Biol 415:13–19

    CAS  PubMed  Google Scholar 

  • Khan YD, Rasool N, Hussain W, Khan SA (2018a) iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal Biochem 550:109–116

    CAS  PubMed  Google Scholar 

  • Khan YD, Rasool N, Hussain W, Khan SA (2018b) iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4417-z

    Article  PubMed  Google Scholar 

  • Khan YD, Jamil M, Hussain W, Rasool N, Khan SA (2019a) pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J Theor Biol 463:47–55

    CAS  PubMed  Google Scholar 

  • Khan YD, Batool A, Rasool N, Khan A (2019b) Prediction of nitrosocysteine sites using position and composition variant features. Lett Org Chem 16:283–293

    CAS  Google Scholar 

  • Khosravian M, Faramarzi FK, Beigi MM, Behbahani M, Mohabatkar H (2013) Predicting antibacterial peptides by the concept of Chou’s pseudo amino acid composition and machine learning methods. Protein Pept Lett 20:180–186

    CAS  PubMed  Google Scholar 

  • Kong L, Zhang L, Lv J (2014) Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition. J Theor Biol 344:12–18

    CAS  PubMed  Google Scholar 

  • Krishnan MS (2018) Using Chou’s general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains. J Theor Biol 445:62–74

    Google Scholar 

  • Kumar R, Srivastava A, Kumari B, Kumar M (2015) Prediction of beta-lactamase and its class by Chou’s pseudo amino acid composition and support vector machine. J Theor Biol 365:96–103

    CAS  PubMed  Google Scholar 

  • Le NQK, Yapp EKY, Ho QT, Nagasundaram N, Ou YY, Yeh HY (2019) iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal Biochem 571:53–61

    CAS  PubMed  Google Scholar 

  • Li TT, Forsen S (1980a) The critical spherical shell in enzymatic fast reaction systems. Biophys Chem 12:265–269

    PubMed  Google Scholar 

  • Li TT, Forsen S (1980b) The flow of substrate molecules in fast enzyme-catalyzed reaction systems. Chem Scr 16:192–196

    CAS  Google Scholar 

  • Li FM, Li QZ (2008) Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Pept Lett 15:612–616

    PubMed  Google Scholar 

  • Li ZC, Zhou XB, Dai Z, Zou XY (2009) Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Amino Acids 37:415–425

    PubMed  Google Scholar 

  • Li XB, Wang SQ, Xu WR, Wang RL (2011) Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS ONE 6:e28111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li LQ, Zhang Y, Zou LY, Zhou Y, Zheng XQ (2012) Prediction of protein subcellular multi-localization based on the general form of Chou’s pseudo amino acid composition. Protein Pept Lett 19:375–387

    CAS  PubMed  Google Scholar 

  • Li L, Yu S, Xiao W, Li Y, Li M, Huang L, Zheng X, Zhou S, Yang H (2014) Prediction of bacterial protein subcellular localization by incorporating various features into Chou’s PseAAC and a backward feature selection approach. Biochimie 104:100–107

    CAS  PubMed  Google Scholar 

  • Li F, Li C, Marquez-Lago TT, Leier A, Akutsu T, Purcell AW, Smith AI, Lightow T, Daly RJ, Song J (2018a) Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 34:4223–4231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wang Y, Li C, Marquez-Lago TT, Leier A, Rawlings ND, Haffari G, Revote J, Akutsu T, Purcell AW, Pike RN, Webb GI, Ian Smith A, Lithgow T, Daly RJ, Whisstock JC, Song J (2018b) Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Brief Bioinform. https://doi.org/10.1093/bib/bby077

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JX, Wang SQ, Du QS, Wei H, Li XM, Meng JZ, Wang QY, Xie NZ, Huang RB (2018c) Simulated protein thermal detection (SPTD) for enzyme thermostability study and an application example for pullulanase from Bacillus deramificans. Curr Pharm Des 24:4023–4033

    CAS  PubMed  Google Scholar 

  • Li F, Zhang Y, Purcell AW, Webb GI, Lithgow T, Li C, Song J (2019) Positive-unlabelled learning of glycosylation sites in the human proteome. BMC Bioinformatics 20:112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Zhang S (2017) Predict protein structural class by incorporating two different modes of evolutionary information into Chou’s general pseudo amino acid composition. J Mol Graph Model 78:110–117

    CAS  PubMed  Google Scholar 

  • Liang Y, Zhang S (2018) Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence. J Theor Biol 454:22–29

    CAS  PubMed  Google Scholar 

  • Liao B, Xiang Q, Li D (2012) Incorporating secondary features into the general form of Chou’s PseAAC for predicting protein structural class. Protein Pept Lett 19:1133–1138

    CAS  PubMed  Google Scholar 

  • Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    CAS  PubMed  Google Scholar 

  • Lin J, Wang Y (2011) Using a novel AdaBoost algorithm and Chou’s pseudo amino acid composition for predicting protein subcellular localization. Protein Pept Lett 18:1219–1225

    CAS  PubMed  Google Scholar 

  • Lin H, Ding H, Feng-Biao Guo FB, Zhang AY, Huang J (2008) Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein Pept Lett 15:739–744

    CAS  PubMed  Google Scholar 

  • Lin H, Wang H, Ding H, Chen YL, Li QZ (2009) Prediction of subcellular localization of apoptosis protein using Chou’s pseudo amino acid composition. Acta Biotheor 57:321–330

    PubMed  Google Scholar 

  • Lin H, Ding C, Yuan L-F, Chen W, Ding H, Li Z-Q, Guo F-B, Huang J, Rao N-N (2013) Predicting subchloroplast locations of proteins based on the general form of Chou’s pseudo amino acid composition: approached from optimal tripeptide composition. Int J Biomath 6:1350003

    Google Scholar 

  • Lin H, Deng EZ, Ding H, Chen W (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 42:12961–12972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Long R (2016) iDHS-EL: identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 32:2411–2418

    PubMed  Google Scholar 

  • Liu B, Wu H (2017) Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 9:67–91

    CAS  Google Scholar 

  • Liu LM, Xu Y (2017) iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med Chem 13:552–559

    CAS  PubMed  Google Scholar 

  • Liu B, Yang F (2017) 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol Ther Nucleic Acids 7:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hu XZ, Liu XX, Wang Y, Li SB (2012) Predicting protein fold types by the general form of Chou’s Pseudo amino acid composition: approached from optimal feature extractions. Protein Pept Lett 19:439–449

    CAS  PubMed  Google Scholar 

  • Liu B, Wang X, Zou Q, Dong Q, Chen Q (2013) Protein remote homology detection by combining Chou’s pseudo amino acid composition and profile-based protein representation. Mol Inf 32:775–782

    CAS  Google Scholar 

  • Liu B, Zhang D, Xu R, Xu J, Wang X, Chen Q, Dong Q (2014a) Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics 30:472–479

    CAS  PubMed  Google Scholar 

  • Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X (2014b) iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS ONE 9:e106691

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Fang L, Liu F, Wang X, Chen J (2015a) Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS ONE 10:e0121501

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Fang L, Wang S, Wang X, Li H (2015b) Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J Theor Biol 385:153–159

    CAS  PubMed  Google Scholar 

  • Liu Z, Xiao X, Qiu WR (2015c) iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem 474:69–77

    CAS  PubMed  Google Scholar 

  • Liu B, Chen J, Wang X (2015d) Protein remote homology detection by combining Chou’s distance-pair pseudo amino acid composition and principal component analysis. Mol Genet Genomics 290:1919–1931

    CAS  PubMed  Google Scholar 

  • Liu J, Xu S, Fan R, Xu J Jiyun, Zhou X Wang (2015e) PseDNA-Pro: DNA-binding protein identification by combining Chou’s PseAAC and physicochemical distance transformation. Mol Inf 34:8–17

    Google Scholar 

  • Liu B, Liu F, Wang X, Chen J, Fang L (2015f) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Liu F, Fang L, Wang X (2015g) repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 31:1307–1309

    PubMed  Google Scholar 

  • Liu Z, Xiao X, Qiu WR (2015h) Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition. Data Brief 4:87–89

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Xiao X, Yu DJ, Jia J, Qiu WR (2016a) pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem 497:60–67

    CAS  PubMed  Google Scholar 

  • Liu B, Fang L, Liu F, Wang X (2016b) iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J Biomol Struct Dyn (JBSD) 34:223–235

    CAS  Google Scholar 

  • Liu B, Fang L, Long R, Lan X (2016c) iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 32:362–369

    CAS  PubMed  Google Scholar 

  • Liu B, Liu F, Fang L, Wang X (2016d) repRNA: a web server for generating various feature vectors of RNA sequences. Mol Genet Genomics 291:473–481

    CAS  PubMed  Google Scholar 

  • Liu B, Wang S, Long R (2017a) iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics 33:35–41

    CAS  PubMed  Google Scholar 

  • Liu B, Wu H, Zhang D, Wang X (2017b) Pse-analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget 8:13338–13343

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Li K, Huang DS (2018a) iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics 34:3835–3842

    CAS  PubMed  Google Scholar 

  • Liu B, Weng F, Huang DS (2018b) iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC. Bioinformatics 34:3086–3093

    CAS  PubMed  Google Scholar 

  • Liu B, Yang F, Huang DS (2018c) iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 34:33–40

    CAS  PubMed  Google Scholar 

  • Lu Y, Wang S, Wang J, Zhou G, Zhang Q, Zhou X, Niu B, Chen Q (2019a) An Epidemic avian influenza prediction model based on google trends. Lett Org Chem 16:303–310

    CAS  Google Scholar 

  • Lu F, Zhu M, Lin Y, Zhong H, Cai L, He L (2019b) The preliminary efficacy evaluation of the CTLA-4-Ig treatment against Lupus nephritis through in silico analyses. J Theor Biol 471:74–81

    CAS  PubMed  Google Scholar 

  • Ma Y, Wang SQ, Xu WR, Wang RL (2012) Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS ONE 7:e38546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal M, Mukhopadhyay A, Maulik U (2015) Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou’s PseAAC. Med Biol Eng Comput 53:331–344

    PubMed  Google Scholar 

  • Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7:42362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei S (2012a) Multi-kernel transfer learning based on Chou’s PseAAC formulation for protein submitochondria localization. J Theor Biol 293:121–130

    CAS  PubMed  Google Scholar 

  • Mei S (2012b) Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning. J Theor Biol 310:80–87

    CAS  PubMed  Google Scholar 

  • Mei J, Zhao J (2018a) Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers. Sci Rep 8:2359

    PubMed  PubMed Central  Google Scholar 

  • Mei J, Zhao J (2018b) Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features. J Theor Biol 427:147–153

    Google Scholar 

  • Mei J, Fu Y, Zhao J (2018) Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition. J Theor Biol 456:41–48

    CAS  PubMed  Google Scholar 

  • Min JL, Xiao X (2013) iEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking. BioMed Res Int (BMRI) 2013:701317

    Google Scholar 

  • Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept Lett 17:1207–1214

    CAS  PubMed  Google Scholar 

  • Mohabatkar H, Mohammad Beigi M, Esmaeili A (2011) Prediction of GABA(A) receptor proteins using the concept of Chou’s pseudo amino acid composition and support vector machine. J Theor Biol 281:18–23

    CAS  PubMed  Google Scholar 

  • Mohabatkar H, Beigi MM, Abdolahi K, Mohsenzadeh S (2013) Prediction of allergenic proteins by means of the concept of Chou’s pseudo amino acid composition and a machine learning approach. Med Chem 9:133–137

    CAS  PubMed  Google Scholar 

  • Mohammad BM, Behjati M, Mohabatkar H (2011) Prediction of metalloproteinase family based on the concept of Chou’s pseudo amino acid composition using a machine learning approach. J Struct Funct Genomics 12:191–197

    Google Scholar 

  • Mondal S, Pai PP (2014) Chou’s pseudo amino acid composition improves sequence-based antifreeze protein prediction. J Theor Biol 356:30–35

    CAS  PubMed  Google Scholar 

  • Mousavizadegan M, Mohabatkar H (2018) Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J Bioinform Comput Biol 16:1850016

    PubMed  Google Scholar 

  • Nanni L, Lumini A (2008) Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids 34:653–660

    CAS  PubMed  Google Scholar 

  • Nanni L, Brahnam S, Lumini A (2012a) Wavelet images and Chou’s pseudo amino acid composition for protein classification. Amino Acids 43:657–665

    CAS  PubMed  Google Scholar 

  • Nanni L, Lumini A, Gupta D, Garg A (2012b) Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou’s pseudo amino acid composition and on evolutionary information. IEEE-ACM Trans Comput Biol Bioinf 9:467–475

    Google Scholar 

  • Nanni L, Brahnam S, Lumini A (2014) Prediction of protein structure classes by incorporating different protein descriptors into general Chou’s pseudo amino acid composition. J Theor Biol 360:109–116

    CAS  PubMed  Google Scholar 

  • Ning Q, Ma Z, Zhao X (2019) dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components. J Theor Biol 470:43–49

    CAS  PubMed  Google Scholar 

  • Niu XH, Hu XH, Shi F, Xia JB (2012) Predicting protein solubility by the general form of Chou’s pseudo amino acid composition: approached from Chaos Game representation and fractal dimension. Protein Pept Lett 19:940–948

    CAS  PubMed  Google Scholar 

  • Niu B, Liang C, Lu Y, Zhao M, Chen Q, Zhang Y, Zheng L (2019) Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics. https://doi.org/10.1016/j.ygeno.2019.05.024get

    Article  PubMed  PubMed Central  Google Scholar 

  • OuYang B, Xie S, Berardi MJ, Zhao XM, Dev J, Yu W, Sun B, Chou JJ (2013) Unusual architecture of the p7 channel from hepatitis C virus. Nature 498:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oxenoid K, Dong YS, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ (2016) Architecture of the mitochondrial calcium uniporter. Nature 533:269–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacharawongsakda E, Theeramunkong T (2013) Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou’s PseAAC. IEEE Trans Nanobiosci 12:311–320

    Google Scholar 

  • Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu C, Liu W, Liu Z, Piai A, Fu Q, Chen S, Wu H, Chou JJ (2019a) Higher-order clustering of the transmembrane anchor of DR5 drives signaling. Cell 176:1477–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Wang S, Zhang Q, Lu Q, Su D, Zuo Y, Yang L (2019b) Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions. J Theor Biol 462:221–229

    CAS  PubMed  Google Scholar 

  • Piai A, Dev J, Fu Q, Chou JJ (2017) Stability and water accessibility of the trimeric membrane anchors of the HIV-1 envelope spikes. J Am Chem Soc 139:18432–18435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YF, Wang CH, Yu XQ, Zhu J, Liu TG, Zheng XQ (2012) Predicting protein structural class by incorporating patterns of over- represented k-mers into the general form of Chou’s PseAAC. Protein Pept Lett 19:388–397

    CAS  PubMed  Google Scholar 

  • Qin YF, Zheng L, Huang J (2013) Locating apoptosis proteins by incorporating the signal peptide cleavage sites into the general form of Chou’s Pseudo amino acid composition. Int J Quantum Chem 113:1660–1667

    CAS  Google Scholar 

  • Qiu WR, Xiao X (2014) iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int J Mol Sci (IJMS) 15:1746–1766

    Google Scholar 

  • Qiu JD, Huang JH, Liang RP, Lu XQ (2009) Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform. Anal Biochem 390:68–73

    CAS  PubMed  Google Scholar 

  • Qiu JD, Huang JH, Shi SP, Liang RP (2010) Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform. Protein Pept Lett 17:715–722

    CAS  PubMed  Google Scholar 

  • Qiu JD, Suo SB, Sun XY, Shi SP, Liang RP (2011) OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou’s pseudo amino acid composition. J Mol Graph Model 30:129–134

    CAS  PubMed  Google Scholar 

  • Qiu WR, Xiao X, Lin WZ (2014) iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. Biomed Res Int (BMRI) 2014:947416

    Google Scholar 

  • Qiu WR, Xiao X, Lin WZ (2015) iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. J Biomol Struct Dyn (JBSD) 33:1731–1742

    CAS  Google Scholar 

  • Qiu WR, Sun BQ, Xiao X, Xu ZC (2016a) iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 7:44310–44321

    PubMed  PubMed Central  Google Scholar 

  • Qiu WR, Sun BQ, Xiao X, Xu ZC (2016b) iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics 32:3116–3123

    CAS  PubMed  Google Scholar 

  • Qiu WR, Xiao X, Xu ZC (2016c) iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget 7:51270–51283

    PubMed  PubMed Central  Google Scholar 

  • Qiu WR, Jiang SY, Sun BQ, Xiao X, Cheng X (2017a) iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier. Med Chem 13:734–743

    CAS  PubMed  Google Scholar 

  • Qiu WR, Jiang SY, Xu ZC, Xiao X (2017b) iRNAm 5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 8:41178–41188

    PubMed  PubMed Central  Google Scholar 

  • Qiu WR, Sun BQ, Xiao X, Xu D (2017c) iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol Inf 36:UNSP 1600010

    Google Scholar 

  • Qiu WR, Zheng QS, Sun BQ, Xiao X (2017d) Multi-iPPseEvo: a multi-label classifier for identifying human phosphorylated proteins by incorporating evolutionary information into Chou’s general PseAAC via grey system theory. Mol Inform 36:1600085

    Google Scholar 

  • Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH (2018a) iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 110:239–246

    CAS  PubMed  Google Scholar 

  • Qiu W, Li S, Cui X, Yu Z, Wang M, Du J, Peng Y, Yu B (2018b) Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition. J Theor Biol 450:86–103

    CAS  PubMed  Google Scholar 

  • Rahimi M, Bakhtiarizadeh MR, Mohammadi-Sangcheshmeh A (2017) OOgenesis_Pred: a sequence-based method for predicting oogenesis proteins by six different modes of Chou’s pseudo amino acid composition. J Theor Biol 414:128–136

    CAS  PubMed  Google Scholar 

  • Rahman SM, Shatabda S, Saha S, Kaykobad M, Sohel Rahman M (2018) DPP-PseAAC: a DNA-binding protein prediction model using Chou’s general PseAAC. J Theor Biol 452:22–34

    CAS  PubMed  Google Scholar 

  • Ren LY, Zhang YS, Gutman I (2012) Predicting the classification of transcription factors by incorporating their binding site properties into a novel mode of Chou’s pseudo amino acid composition. Protein Pept Lett 19:1170–1176

    CAS  PubMed  Google Scholar 

  • Sabooh MF, Iqbal N, Khan M, Khan M, Maqbool HF (2018) Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J Theor Biol 452:1–9

    CAS  PubMed  Google Scholar 

  • Sahu SS, Panda G (2010) A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Comput Biol Chem 34:320–327

    CAS  PubMed  Google Scholar 

  • Sanchez V, Peinado AM, Perez-Cordoba JL, Gomez AM (2015) A new signal characterization and signal-based Chou’s PseAAC representation of protein sequences. J Bioinform Comput Biol 13:1550024

    CAS  PubMed  Google Scholar 

  • Sankari ES, Manimegalai DD (2018) Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC. J Theor Biol 455:319–328

    CAS  PubMed  Google Scholar 

  • Sarangi AN, Lohani M, Aggarwal R (2013) Prediction of essential proteins in prokaryotes by incorporating various physico-chemical features into the general form of Chou’s pseudo amino acid composition. Protein Pept Lett 20:781–795

    CAS  PubMed  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Dehzangi A, Lyons J, Paliwal K, Tsunoda T, Sharma A (2015) Predict gram-positive and gram-negative subcellular localization via incorporating evolutionary information and physicochemical features Into Chou’s general PseAAC. IEEE Trans Nanobiosci 14:915–926

    Google Scholar 

  • Shen HB (2008) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    CAS  PubMed  Google Scholar 

  • Shen HB, Song JN (2009) Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J Biomed Sci Eng (JBiSE) 2:136–143

    CAS  Google Scholar 

  • Shen Y, Tang J, Guo F (2019) Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC. J Theor Biol 462:230–239

    CAS  PubMed  Google Scholar 

  • Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, Webb GI, Pike RN (2018a) PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics 34:684–687

    CAS  PubMed  Google Scholar 

  • Song J, Li F, Takemoto K, Haffari G, Akutsu T, Webb GI (2018b) PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural and network features in a machine learning framework. J Theor Biol 443:125–137

    CAS  PubMed  Google Scholar 

  • Song J, Wang Y, Li F, Akutsu T, Rawlings ND, Webb GI (2018c) iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform. https://doi.org/10.1093/bib/bby028

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Kumar R, Kumar M (2018) BlaPred: predicting and classifying beta-lactamase using a 3-tier prediction system via Chou’s general PseAAC. J Theor Biol 457:29–36

    CAS  PubMed  Google Scholar 

  • Su Q, Lu W, Du D, Chen F, Niu B (2017) Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget 8:49359–49369

    PubMed  PubMed Central  Google Scholar 

  • Su ZD, Huang Y, Zhang ZY, Zhao YW, Wang D, Chen W, Lin H (2018) iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 34:4196–4204

    CAS  PubMed  Google Scholar 

  • Sun XY, Shi SP, Qiu JD, Suo SB, Huang SY, Liang RP (2012) Identifying protein quaternary structural attributes by incorporating physicochemical properties into the general form of Chou’s PseAAC via discrete wavelet transform. Mol BioSyst 8:3178–3184

    CAS  PubMed  Google Scholar 

  • Tahir M, Hayat M (2016) iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou’s PseAAC. Mol BioSyst 12:2587–2593

    CAS  PubMed  Google Scholar 

  • Tahir M, Hayat M, Kabir M (2017) Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou’s trinucleotide composition. Comput Methods Programs Biomed 146:69–75

    PubMed  Google Scholar 

  • Tahir M, Hayat M, Khan SA (2019a) iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition. Mol Genet Genomics 294:199–210

    CAS  PubMed  Google Scholar 

  • Tahir M, Tayara H, Chong KT (2019b) iRNA-PseKNC(2methyl): identify RNA 2′-O-methylation sites by convolution neural network and Chou’s pseudo components. J Theor Biol 465:1–6

    CAS  PubMed  Google Scholar 

  • Tang H, Chen W, Lin H (2016) Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol BioSyst 12:1269–1275

    CAS  PubMed  Google Scholar 

  • Tian B, Wu X, Chen C, Qiu W, Ma Q, Yu B (2019) Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach. J Theor Biol 462:329–346

    CAS  PubMed  Google Scholar 

  • Tiwari AK (2016) Prediction of G-protein coupled receptors and their subfamilies by incorporating various sequence features into Chou’s general PseAAC. Comput Methods Programs Biomed 134:197–213

    PubMed  Google Scholar 

  • Tripathi P, Pandey PN (2017) A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition. J Theor Biol 424:49–54

    CAS  PubMed  Google Scholar 

  • Wan S, Mak MW, Kung SY (2013) GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou’s pseudo amino acid composition. J Theor Biol 323:40–48

    CAS  PubMed  Google Scholar 

  • Wang JF (2013) Metallo-beta-lactamases: structural features, antibiotic recognition, inhibition, and inhibitor design. Curr Top Med Chem 13:1242–1253

    CAS  PubMed  Google Scholar 

  • Wang SQ, Du QS (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Comm (BBRC) 354:634–640

    CAS  Google Scholar 

  • Wang J, Pielak RM, McClintock MA, Chou JJ (2009a) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16:1267–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SQ, Du QS, Huang RB, Zhang DW (2009b) Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Commun (BBRC) 386:432–436

    CAS  Google Scholar 

  • Wang X, Li GZ, Lu WC (2013) Virus-ECC-mPLoc: a multi-label predictor for predicting the subcellular localization of virus proteins with both single and multiple sites based on a general form of Chou’s pseudo amino acid composition. Protein Pept Lett 20:309–317

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang W, Zhang Q, Li GZ (2015) MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou’s pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 31:2639–2645

    CAS  PubMed  Google Scholar 

  • Wang J, Li B, Yang R, Xie TT, Marquez-Lago A, Leier M, Hayashida T, Akutsu Y, Zhang J, Selkrig T, Zhou J, Song T Lithgow (2018a) Bastion3: a two-layer approach for identifying type III secreted effectors using ensemble learning. Bioinformatics. https://doi.org/10.1093/bioinformatics/xxxxx

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang B, Leier A, Marquez-Lago TT, Hayashida M, Rocker A, Yanju Z, Akutsu T, Strugnell RA, Song J, Lithgow T (2018b) Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics 34:2546–2555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang R, Mu Y (2019) Fu-SulfPred: identification of protein S-sulfenylation sites by fusing Forests via Chou’s general PseAAC. J Theor Biol 461:51–58

    CAS  PubMed  Google Scholar 

  • Xia XL, Fa BT, Cong S, Wang JF (2014) Research/review: insights into the mutation-induced dysfunction of arachidonic acid metabolism from modeling of human CYP2J2. Curr Drug Metab (CDM) 15:502–513

    CAS  Google Scholar 

  • Xiao X, Lin WZ (2013) Recent advances in predicting protein classification and their applications to drug development. Curr Top Med Chem 13:1622–1635

    CAS  PubMed  Google Scholar 

  • Xiao X, Wang P (2013) Recent progresses in identifying nuclear receptors and their families. Curr Top Med Chem 13:1192–1200

    CAS  PubMed  Google Scholar 

  • Xiao X, Min JL, Wang P (2013a) iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J Theor Biol 337C:71–79

    Google Scholar 

  • Xiao X, Min JL, Wang P (2013b) iGPCR-Drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS ONE 8:e72234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Min JL, Wang P (2013c) Predict drug-protein interaction in cellular networking. Curr Top Med Chem 13:1707–1712

    CAS  PubMed  Google Scholar 

  • Xiao X, Wang P, Lin WZ, Jia JH (2013d) iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436:168–177

    CAS  PubMed  Google Scholar 

  • Xiao X, Min JL, Lin WZ, Liu Z, Cheng X (2015) iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J Biomol Struct Dyn (JBSD) 33:2221–2233

    CAS  Google Scholar 

  • Xiao X, Ye HX, Liu Z, Jia JH (2016) iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget 7:34180–34189

    PubMed  PubMed Central  Google Scholar 

  • Xiao X, Cheng X, Su S, Nao Q (2017) pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Natural Science 9:331–349

    Google Scholar 

  • Xiao X, Cheng X, Chen G, Mao Q (2018a) pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics. https://doi.org/10.1016/j.ygeno.2018.05.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Cheng X, Chen G, Mao Q (2018b) pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset. Med Chem 15:496–509

    Google Scholar 

  • Xiao X, Xu ZC, Qiu WR, Wang P, Ge HT (2018c) iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics. https://doi.org/10.1016/j.ygeno.2018.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiaohui N, Nana L, Jingbo X, Dingyan C, Yuehua P, Yang X, Weiquan W, Dongming W, Zengzhen W (2013) Using the concept of Chou’s pseudo amino acid composition to predict protein solubility: an approach with entropies in information theory. J Theor Biol 332:211–217

    PubMed  Google Scholar 

  • Xie HL, Fu L, Nie XD (2013) Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng Des Sel 26:735–742

    CAS  PubMed  Google Scholar 

  • Xu Y (2016) Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem 16:591–603

    CAS  PubMed  Google Scholar 

  • Xu J, Ding LYWu (2013) iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS ONE 8:e55844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Li C (2017) iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med Chem 13:544–551

    CAS  PubMed  Google Scholar 

  • Xu Y, Shao XJ, Wu LY, Deng NY (2013) iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 1:e171

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wen X, Shao XJ, Deng NY (2014a) iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci (IJMS) 15:7594–7610

    CAS  Google Scholar 

  • Xu Y, Wen X, Wen LS, Wu LY, Deng NY (2014b) iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE 9:e105018

    PubMed  PubMed Central  Google Scholar 

  • Xu R, Zhou J, Liu B, He YA, Zou Q, Wang X (2015) Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J Biomol Struct Dyn (JBSD) 33:1720–1730

    CAS  Google Scholar 

  • Xu C, Sun D, Liu S, Zhang Y (2016) Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou’s general pseudo amino acid composition. J Theor Biol 406:105–115

    CAS  PubMed  Google Scholar 

  • Xu C, Ge L, Zhang Y, Dehmer M, Gutman I (2017) Prediction of therapeutic peptides by incorporating q-Wiener index into Chou’s general PseAAC. J Biomed Inform. https://doi.org/10.1016/j.jbi.2017.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Qiu WR, Liu G, Guo FB, Chen W, Lin H (2018) iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci 14:883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Guo Y, Li Y, Li G, Li M, Luo J, Xiong W, Qin W (2010) SecretP: identifying bacterial secreted proteins by fusing new features into Chou’s pseudo amino acid composition. J Theor Biol 267:1–6

    CAS  PubMed  Google Scholar 

  • Yu Y, Li X, Hao P, Wang JF (2014) Research/review: structure and linkage disequilibrium analysis of adamantane resistant mutations in influenza virus M2 proton channel. Current Drug Metab (CDM) 15:526–534

    CAS  Google Scholar 

  • Yu B, Li S, Qiu WY, Chen C, Chen RX, Wang L, Wang MH, Zhang Y (2017a) Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget 8:107640–107665

    PubMed  PubMed Central  Google Scholar 

  • Yu B, Lou L, Li S, Zhang Y, Qiu W, Wu X, Wang M, Tian B (2017b) Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising. J Mol Graph Model 76:260–273

    CAS  PubMed  Google Scholar 

  • Zeng YH, Guo YZ, Xiao RQ, Yang L, Yu LZ, Li ML (2009) Using the augmented Chou’s pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach. J Theor Biol 259:366–372

    CAS  PubMed  Google Scholar 

  • Zhang CT (1992) An optimization approach to predicting protein structural class from amino acid composition. Protein Sci 1:401–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL (2015) Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou’s general PseAAC. Chemom Intell Lab Syst (CHEMOLAB) 142:28–35

    CAS  Google Scholar 

  • Zhang S, Duan X (2018) Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC. J Theor Biol 437:239–250

    CAS  PubMed  Google Scholar 

  • Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition. J Theor Biol 253:310–315

    CAS  PubMed  Google Scholar 

  • Zhang L, Kong L (2018) iRSpot-ADPM: identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components. J Theor Biol 441:1–8

    CAS  PubMed  Google Scholar 

  • Zhang L, Kong L (2019) iRSpot-PDI: identification of recombination spots by incorporating dinucleotide property diversity information into Chou’s pseudo components. Genomics 111:457–464

    PubMed  Google Scholar 

  • Zhang S, Liang Y (2018) Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC. J Theor Biol 457:163–169

    CAS  PubMed  Google Scholar 

  • Zhang GY, Li HC, Gao JQ, Fang BS (2008a) Predicting lipase types by improved Chou’s pseudo amino acid composition. Protein Pept Lett 15:1132–1137

    CAS  PubMed  Google Scholar 

  • Zhang SW, Chen W, Yang F, Pan Q (2008b) Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Amino Acids 35:591–598

    PubMed  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2008c) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids 34:565–572

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhao X, Sun P, Ma Z (2014a) PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int J Mol Sci 15:11204–11219

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun P, Zhao X, Ma Z (2014b) PECM: prediction of extracellular matrix proteins using the concept of Chou’s pseudo amino acid composition. J Theor Biol 363:412–418

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhao X, Kong L (2014c) Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou’s pseudo amino acid composition. J Theor Biol 355:105–110

    CAS  PubMed  Google Scholar 

  • Zhang M, Zhao B, Liu X (2015) Predicting industrial polymer melt index via incorporating chaotic characters into Chou’s general PseAAC. Chemom Intell Lab Syst (CHEMOLAB) 146:232–240

    CAS  Google Scholar 

  • Zhang CJ, Tang H, Li WC, Lin H, Chen W (2016) iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 7:69783–69793

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZD, Liang K, Li K, Wang GQ, Zhang KW, Cai L, Zha ST (2017) Chlorella vulgaris induces apoptosis of human non-small cell lung carcinoma (NSCLC) cells. Med Chem 13:560–568

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xie R, Wang J, Leier A, Marquez-Lago TT, Akutsu T, Webb GI, Song J (2018a) Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Brief Bioinform. https://doi.org/10.1093/bib/bby079

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Yang Y, Lei K Song (2018b) iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou’s pseudo components. Genomics. https://doi.org/10.1016/j.ygeno.2018.11.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Li F, Marquez-Lago TT, Leier A, Fan C, Kwoh CK, Song J, Jia C (2019) MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz016

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XW, Li XT, Ma ZQ, Yin MH (2012a) Identify DNA-binding proteins with optimal Chou’s amino acid composition. Protein Pept Lett 19:398–405

    CAS  PubMed  Google Scholar 

  • Zhao XW, Ma ZQ, Yin MH (2012b) Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou’s Pseudo amino acid composition. Protein Pept Lett 19:492–500

    CAS  PubMed  Google Scholar 

  • Zhao W, Wang L, Zhang TX, Zhao ZN, Du PF (2018) A brief review on software tools in generating Chou’s pseudo-factor representations for all types of biological sequences. Protein Pept Lett 25:822–829

    CAS  PubMed  Google Scholar 

  • Zhong WZ, Zhou SF (2014) Molecular science for drug development and biomedicine. Int J Mol Sci 15:20072–20078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GP (2011) The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol 284:142–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GP, Deng MH (1984) An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J 222:169–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GP, Zhong WZ (2016) Perspectives in medicinal chemistry. Curr Top Med Chem 16:381–382

    CAS  PubMed  Google Scholar 

  • Zhou SF, Zhong WZ (2017) Drug design and discovery: principles and applications. Molecules 22:279

    PubMed Central  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    CAS  PubMed  Google Scholar 

  • Zia-ur-Rehman AK (2012) Identifying GPCRs and their Types with Chou’s Pseudo Amino Acid Composition: an Approach from Multi-scale Energy Representation and Position Specific Scoring Matrix. Protein Pept Lett 19:890–903

    CAS  PubMed  Google Scholar 

  • Zou HL, Xiao X (2016a) Predicting the functional types of singleplex and multiplex eukaryotic membrane proteins via different models of Chou’s pseudo amino acid compositions. J Membr Biol 249:23–29

    CAS  PubMed  Google Scholar 

  • Zou HL, Xiao X (2016b) Classifying multifunctional enzymes by incorporating three different models into Chou’s general pseudo amino acid composition. J Membr Biol 249:561–567. https://doi.org/10.1007/s00232-016-9904-3

    Article  CAS  Google Scholar 

  • Zou D, He Z, He J, Xia Y (2011) Supersecondary structure prediction using Chou’s pseudo amino acid composition. J Comput Chem 32:271–278

    CAS  PubMed  Google Scholar 

  • Zuo YC, Peng Y, Liu L, Chen W, Yang L, Fan GL (2014) Predicting peroxidase subcellular location by hybridizing different descriptors of Chou’s pseudo amino acid patterns. Anal Biochem 458:14–19

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author wishes to thank the two anonymous reviewers for their constructive comments, which were very helpful for strengthening the presentation of this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chen Chou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, KC. Progresses in Predicting Post-translational Modification. Int J Pept Res Ther 26, 873–888 (2020). https://doi.org/10.1007/s10989-019-09893-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09893-5

Keywords

Navigation