Structure Based Screening for Inhibitory Therapeutics of CTLA-4 Unveiled New Insights About Biology of ACTH

Abstract

Although the biology of adrenocorticotropic hormone (ACTH) protein has already been scrutinized, some functional aspects of its biology are yet to be elucidated in the context of immunological disorders. In this regard, virtual screening of a compound library was performed against the structure of Cytotoxic T-Lymphocyte Associated Protein-4 (CTLA-4) (assessed both spatially and energetically) to discover novel biological functions for ACTH. The results of virtual screening and the MD simulation demonstrated that DB01284 has high binding energy along with proper interaction orientation against CTLA-4 (FG loop) by a clamp like structure. The employed methodology was checked using confirmatory control analyses. Intriguingly, DB01284 belongs to Tetracosactide (already prescribed protein drug for clinical conditions) which is the N-terminal region of ACTH. This is the first study to reveal that ACTH protein binds to the same amino acids of CTLA-4 (FG-loop) as B7 and anti-CTLA-4 antibody binds. In light of this finding, the molecular mechanism of ACTH function in patients suffering from Cushing’s Syndrom and the immunological bases for ACTH therapy of multiple sclerosis (MS) patients could be further delineated. Moreover, this finding suggests that ACTH could also act to block CTLA-4 in the context of anticancer immune check point blockade.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdel-Malek Z (2001) Melanocortin receptors: their functions and regulation by physiological agonists and antagonists. Cell Mol Life Sci 58:434–441

    CAS  PubMed  Google Scholar 

  2. Alegre M-L, Shiels H, Thompson CB, Gajewski TF (1998) Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161:3347–3356

    CAS  PubMed  Google Scholar 

  3. Anderson DE, Bieganowska KD, Bar-Or A, Oliveira EM, Carreno B, Collins M, Hafler DA (2000) Paradoxical inhibition of T-cell function in response to CTLA-4 blockade; heterogeneity within the human T-cell population. Nat Med 6:211–214

    CAS  PubMed  Google Scholar 

  4. Arnason BG, Berkovich R, Catania A, Lisak RP, Zaidi M (2013) Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult Scler J 19:130–136

    Google Scholar 

  5. Bazmara H, Rasooli I, Jahangiri A, Sefid F, Astaneh SDA, Payandeh Z (2019) Antigenic properties of iron regulated proteins in Acinetobacter baumannii: an in silico approach. Int J Pept Res Ther 25:205–213

    CAS  Google Scholar 

  6. Berkovich R, Agius MA (2014) Mechanisms of action of ACTH in the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord 7:83–96

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Boasberg P, Hamid O, O’Day S (2010) Ipilimumab: unleashing the power of the immune system through CTLA-4 blockade. In: Seminars in oncology, vol 5. Elsevier, Amsterdam, pp 440–449

  8. Brod SA, Hood ZM (2011) Ingested (oral) ACTH inhibits EAE. J Neuroimmunol 232:131–135

    CAS  PubMed  Google Scholar 

  9. Brzoska T, Luger TA, Maaser C, Abels C, Böhm M (2008) α-Melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 29:581–602

    CAS  PubMed  Google Scholar 

  10. Catania A, Gatti S, Colombo G, Lipton JM (2004) Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56:1–29

    CAS  PubMed  Google Scholar 

  11. Colao A et al (2000) Increased prevalence of thyroid autoimmunity in patients successfully treated for Cushing’s disease. Clin Endocrinol 53:13–19

    CAS  Google Scholar 

  12. Cross AH et al (1995) Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation. J Clin Investig 95:2783

    CAS  PubMed  Google Scholar 

  13. da Mota F, Murray C, Ezzat S (2011) Overt immune dysfunction after Cushing’s syndrome remission: a consecutive case series and review of the literature. J Clin Endocrinol Metab 96:E1670–E1674

    PubMed  Google Scholar 

  14. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Chemical biology. Springer, New York, pp 243–250

  15. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    CAS  PubMed  Google Scholar 

  16. Fareau GG, Vassilopoulou-Sellin R (2007) Hypercortisolemia and infection. Infect Dis Clin 21:639–657

    Google Scholar 

  17. Fong L et al (2009) Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res 69:609–615

    CAS  PubMed  Google Scholar 

  18. Fukazawa T et al (1999) CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients. J Neurol Sci 171:49–55

    CAS  PubMed  Google Scholar 

  19. Gimmi CD, Freeman GJ, Gribben JG, Gray G, Nadler LM (1993) Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci 90:6586–6590

    CAS  PubMed  Google Scholar 

  20. Grohmann U et al (2002) CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097

    CAS  PubMed  Google Scholar 

  21. Jahangiri A, Amani J, Halabian R (2017) In silico analyses of staphylococcal enterotoxin B as a DNA vaccine for cancer therapy. Int J Pept Res Ther 24(1):131–142. https://doi.org/10.1007/s10989-017-9595-3

    CAS  Article  Google Scholar 

  22. Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J (2018a) Highly conserved exposed immunogenic peptides of Omp34 against Acinetobacter baumannii: an innovative approach. J Microbiol Methods 144:79–85

    CAS  PubMed  Google Scholar 

  23. Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J (2018b) An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii. Comput Biol Chem 72:77–86

    CAS  PubMed  Google Scholar 

  24. Kantarci OH et al (2003) CTLA4 is associated with susceptibility to multiple sclerosis. J Neuroimmunol 134:133–141

    CAS  PubMed  Google Scholar 

  25. Kazemi Moghaddam E, Owlia P, Jahangiri A, Rasooli I, Rahbar MR, Aghajani M (2017a) Conserved OprF as a selective immunogen against Pseudomonas aeruginosa. Iran J Pathol 12:86–93

    Google Scholar 

  26. Kazemi Moghaddam E, Owlia P, Jahangiri A, Rasooli I, Rahbar MR, Aghajani M (2017b) Conserved OprF as a selective immunogen against Pseudomonas aeruginosa. Iran J Pathol 12:165–170

    PubMed  PubMed Central  Google Scholar 

  27. Khalili S, Rasaee M, Bamdad T (2017a) 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Mol Biol 51:155–166

    CAS  Google Scholar 

  28. Khalili S, Rasaee MJ, Mousavi SL, Amani J, Jahangiri A, Borna H (2017b) In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection. Mol Genet Microbiol Virol 32:230–240

    Google Scholar 

  29. Khalili S, Zakeri A, Hashemi ZS, Masoumikarimi M, Manesh MRR, Shariatifar N, Sani MJ (2017c) Structural analyses of the interactions between the thyme active ingredients and human serum albumin. Turk J Biochem 42(4):459–467

    CAS  Google Scholar 

  30. Khalili S, Jahangiri A, Hashemi ZS, Khalesi B, Mardsoltani M, Amani J (2017d) Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function. Toxicon 127:90–99

    CAS  PubMed  Google Scholar 

  31. Khoury SJ, Akalin E, Chandraker A, Turka LA, Linsley PS, Sayegh MH, Hancock WW (1995) CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J Immunol 155:4521–4524

    CAS  PubMed  Google Scholar 

  32. Kovalovsky D, Refojo D, Holsboer F, Arzt E (2000) Molecular mechanisms and Th1/Th2 pathways in corticosteroid regulation of cytokine production. J Neuroimmunol 109:23–29

    CAS  PubMed  Google Scholar 

  33. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    CAS  PubMed  Google Scholar 

  34. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    CAS  PubMed  Google Scholar 

  35. Krummel MF, Sullivan TJ, Allison JP (1996) Superantigen responses and co-stimulation: cD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int Immunol 8:519–523

    CAS  PubMed  Google Scholar 

  36. Kwon ED et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15:700–712

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kyi C, Postow MA (2014) Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 588:368–376

    CAS  PubMed  Google Scholar 

  38. Lee JY et al (2016) Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun 7:13354

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    CAS  PubMed  Google Scholar 

  40. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R (1994) Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:793–801

    CAS  PubMed  Google Scholar 

  41. Manzotti CN, Tipping H, Perry LC, Mead KI, Blair PJ, Zheng Y, Sansom DM (2002) Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25 + regulatory T cells. Eur J Immunol 32:2888–2896

    CAS  PubMed  Google Scholar 

  42. McCoy KD, Le Gros G (1999) The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol 77:1–10

    CAS  PubMed  Google Scholar 

  43. Metzler WJ et al (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4:527–531

    CAS  PubMed  Google Scholar 

  44. Mocellin S, Nitti D (2013) CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochimica et Biophysica Acta (BBA) 1836:187–196

    CAS  Google Scholar 

  45. Mohammadpour H, Khalili S, Hashemi ZS (2015) Kremen is beyond a subsidiary co-receptor of Wnt signaling: an in silico validation. Turk J Biol 39:501–510

    CAS  Google Scholar 

  46. Mohammadpour H, Pourfathollah AA, Zarif MN, Khalili S (2016) Key role of Dkk3 protein in inhibition of cancer cell proliferation: an in silico identification. J Theor Biol 393:98–104

    CAS  PubMed  Google Scholar 

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    PubMed  PubMed Central  Google Scholar 

  49. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH, Dastmalchi S (2019) Affinity maturation and characterization of the ofatumumab monoclonal antibody. J Cell Biochem 120:940–950

    CAS  PubMed  Google Scholar 

  51. Pender MP, Greer JM (2007) Immunology of multiple sclerosis. Curr Allergy Asthma Rep 7:285–292

    CAS  PubMed  Google Scholar 

  52. Pivonello R, De Martino MC, De Leo M, Tauchmanovà L, Faggiano A, Lombardi G, Colao A (2007) Cushing’s syndrome: aftermath of the cure. Arquivos Brasileiros de Endocrinol Metab 51:1381–1391

    Google Scholar 

  53. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahbar MR et al (2019) Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect Genet Evol 71:116–127

    CAS  PubMed  Google Scholar 

  55. Schwartz RH (1992) Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71:1065–1068

    CAS  PubMed  Google Scholar 

  56. Selby M, Engelhardt J, Quigley M, Henning K, Chen T, Srinivasan M (2013) Korman A (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1(1):32–42. https://doi.org/10.1158/2326-6066

    CAS  Article  PubMed  Google Scholar 

  57. Stamper CC et al (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611

    CAS  PubMed  Google Scholar 

  58. Suvannang N, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2011) Molecular docking of aromatase inhibitors. Molecules 16(5):3597–3617

    CAS  PubMed Central  Google Scholar 

  59. Takasu N, Ohara N, Yamada T, Komiya I (1993) Development of autoimmune thyroid dysfunction after bilateral adrenalectomy in a patient with Carney’s complex and after removal of ACTH-producing pituitary adenoma in a patient with Cushing’s disease. J Endocrinol Investig 16:697–702

    CAS  Google Scholar 

  60. Topalian SL, Sharpe AH (2014) Balance and imbalance in the immune system: life on the edge. Immunity 41:682–684

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Torino F, Barnabei A, De Vecchis L, Salvatori R, Corsello SM (2012) Hypophysitis induced by monoclonal antibodies to cytotoxic T lymphocyte antigen 4: challenges from a new cause of a rare disease. Oncologist 17:525–535

    PubMed  PubMed Central  Google Scholar 

  62. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ueda H et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506

    CAS  PubMed  Google Scholar 

  64. Wolchok JD et al (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci 1291:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wykes MN, Lewin SR (2017) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18(2):91

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tarbiat Modares University for supporting the conduct of this research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Saeed Khalili or Mohammad Javad Rasaee.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramezani, A., Zakeri, A., Mard-Soltani, M. et al. Structure Based Screening for Inhibitory Therapeutics of CTLA-4 Unveiled New Insights About Biology of ACTH. Int J Pept Res Ther 26, 849–859 (2020). https://doi.org/10.1007/s10989-019-09891-7

Download citation

Keywords

  • ACTH
  • CTLA-4
  • Virtual screening
  • Autoimmune diseases