Detecting the Quantity of Acrylamide in Potato Chips Utilizing CdTe Surface Functionalized Quantum Dots with Fluorescence Spectroscopy

Abstract

According to the classification of the International Agency for Research on Cancer (IARC), acrylamide is a compound in “probably carcinogenic for humans” class (Group 2A). Acrylamide is produced through the reactions induced by heating food within the amino group asparagine and the carbonyl group decreasing sugars along side the thermal treatment of initial Maillard reaction products. The purpose of this work is to present and enhance an innovative technique for acrylamide determination in potato chips through CdTe surface-functionalized quantum dots as a reagent for the determination of acrylamide by fluorescence spectroscopy. For this purpose, fluorescence emission spectroscopy was used instead of conventional HPLC/GC methods and data of merit of the suggested technique were assessed. The acrylamide quantity in 4 potato chips specimens, prepared from a local market in Tehran, was determined through utilizing the suggested process. Effective parameters in the process were optimized using the one-factor-at-a-time (OFAT) technique. The optimal quantities of effective parameters such as pH absorption, temperature, and emission wavelength were determined. Comparison between two methods, namely HPLC and fluorescence spectroscopy, was also described. The merit figures for the suggested approach were within the idyllic range. The developed methods showed a high correlation coefficient (0.991), high sensitivity, and repeatability. Results of the fluorescence emission spectroscopy and its comparison with Mass/HPLC revealed the high reliability and performance of the recommended method as an efficient, simple, and quick procedure with reduced cost and time in the determination of acrylamide in potato chip specimens.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bagdonaite K, Derler K, Murkovic M (2008) Determination of acrylamide during roasting of coffee. J Agric Food Chem 56(15):6081–6086

    CAS  PubMed  Article  Google Scholar 

  2. Bergstrom FW, Fernelius WC (1933) The chemistry of the alkali amides. Chem Rev 12(1):43–179

    CAS  Article  Google Scholar 

  3. Bermudo E, Moyano E, Puignou L, Galceran MT (2008) Liquid chromatography coupled to tandem mass spectrometry for the analysis of acrylamide in typical Spanish products. Talanta 76(2):389–394

    CAS  PubMed  Article  Google Scholar 

  4. Besaratinia A, Pfeifer GP (2007) A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis 28(3):519–528

    CAS  PubMed  Article  Google Scholar 

  5. Contam E (2015) Scientific opinion on acrylamide in food. EFSA contam panel (EFSA panel on contaminants in the food chain). EFSA J 13(6):4104–4425

    Google Scholar 

  6. Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131

    Google Scholar 

  7. Delatour T, Périsset A, Goldmann T, Riediker S, Stadler RH (2004) Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectroscopy. J Agric Food Chem 52(15):4625–4631

    CAS  PubMed  Article  Google Scholar 

  8. Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicol Sci 75(1):7–15

    CAS  PubMed  Article  Google Scholar 

  9. Freisling H, Moskal A, Ferrari P, Nicolas G, Knaze V, Clavel-Chapelon F, Boeing H (2013) Dietary acrylamide intake of adults in the European Prospective Investigation into Cancer and Nutrition differs greatly according to geographical region. Eur J Nutr 52(4):1369–1380

    CAS  PubMed  Article  Google Scholar 

  10. Gianni S, Armando F, Gabriella M, Massimo R, Sauro V, Sergio A (2007) HPLC–MS validation of QualisaFoo® biosensor kit for cost-effective control of acrylamide levels in Italian coffee. Food Control 18(10):1267–1271

    CAS  Article  Google Scholar 

  11. Gökmen V (2014) A perspective on the evaluation of safety risks in thermal processing of foods with an example for acrylamide formation in biscuits. Qual Assur Saf Crops Foods 6(3):319–325

    Article  CAS  Google Scholar 

  12. Hu Q, Xu X, Li Z, Zhang Y, Wang J, Fu Y, Li Y (2014) Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosens Bioelectron 54:64–71

    CAS  PubMed  Article  Google Scholar 

  13. Huang Y, Li C, Hu H, Wang Y, Shen M, Nie SP, Xie MY (2019) Simultaneous determination of acrylamide and 5-hydroxymethylfurfural in heat processed foods employing EMR-Lipid as a new dispersive solid-phase extraction sorbent followed by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 67:5017–5025

    CAS  PubMed  Article  Google Scholar 

  14. International Agency for Research on Cancer. (1994). Some industrial chemicals. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 60

  15. Joint, F. A. O., World Health Organization, & WHO Expert Committee on Food Additives (2011) Evaluation of certain contaminants in food: seventy-second [72nd] report of the Joint FAO/WHO Expert Committee on Food Additives. FAO, Geneva

    Google Scholar 

  16. Kim CT, Hwang ES, Lee HJ (2007) An improved LC-MS/MS method for the quantitation of acrylamide in processed foods. Food Chem 101(1):401–409

    CAS  Article  Google Scholar 

  17. Li J, Liu B, Li J (2006) Controllable self-assembly of CdTe/poly (N-isopropylacrylamide-acrylic acid) microgels in response to pH stimuli. Langmuir 22(2):528–531

    CAS  PubMed  Article  Google Scholar 

  18. Liu J, Yang X, Wang K, Yang R, Ji H, Yang L, Wu C (2011) A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism. Chem Commun 47(3):935–937

    CAS  Article  Google Scholar 

  19. Mottram DS, Wedzicha BL, Dodson AT (2002) Food chemistry: acrylamide is formed in the Maillard reaction. Nature 419(6906):448

    CAS  PubMed  Article  Google Scholar 

  20. Oracz J, Nebesny E, Żyżelewicz D (2011) New trends in quantification of acrylamide in food products. Talanta 86:23–34

    CAS  PubMed  Article  Google Scholar 

  21. Parzefall W (2008) Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol 46(4):1360–1364

    CAS  PubMed  Article  Google Scholar 

  22. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476

    CAS  PubMed  Article  Google Scholar 

  23. Shahraki S, Shojaei S, Shojaei S (2018) Inhibitory role of β-casein on the α-synuclein aggregation associated with Parkinson’s disease in vitro. Int J Pept Res Ther 24(1):179–187

    CAS  Article  Google Scholar 

  24. Smith CJ, Perfetti TA, Rumple MA, Rodgman A, Doolittle DJ (2000) “IARC group 2A Carcinogens” reported in cigarette mainstream smoke. Food Chem Toxicol 38(4):371–383

    CAS  PubMed  Article  Google Scholar 

  25. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Riediker S (2002) Food chemistry: acrylamide from Maillard reaction products. Nature 419(6906):449

    CAS  PubMed  Article  Google Scholar 

  26. Studer A, Blank I, Stadler RH (2004) Thermal processing contaminants in foodstuffs and potential strategies of control. Czech J Food Sci 22:1

    CAS  Article  Google Scholar 

  27. Tardiff RG, Gargas ML, Kirman CR, Carson ML, Sweeney LM (2010) Estimation of safe dietary intake levels of acrylamide for humans. Food Chem Toxicol 48(2):658–667

    CAS  PubMed  Article  Google Scholar 

  28. Tekkeli SEK, Önal C, Önal A (2012) A review of current methods for the determination of acrylamide in food products. Food Anal Methods 5(1):29–39

    Article  Google Scholar 

  29. Vesela H, Šucman E (2013) Determination of acrylamide in food using adsorption stripping voltammetry. Czech J Food Sci 31(4):401–406

    CAS  Article  Google Scholar 

  30. Youssef MM, Abou-Gharbia HA, Abou-Bakr HA (2004) Acrylamide in food: an overview. Alex J Food Sci Technol 1(1):1–22

    Google Scholar 

  31. Zeynali ME, Rabiei A (2002) Alkaline hydrolysis of polyacrylamide and study on poly (acrylamide-co-sodium acrylate) properties. Iran Polym J 11(4)

  32. Zokaei M, Kamankesh M, Shojaei S, Mohammadi A (2016) Determining the amount of acrylamide in potato chips using xanthydrol as a derivative representative with gas chromatography-mass spectrometry. Nutr Food Sci Res 3(1):51–56

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Mazandaran and University of Tehran.

Author information

Affiliations

Authors

Contributions

Authors read and approved the final manuscript.

Corresponding author

Correspondence to Leila Baharinikoo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baharinikoo, L., Chaichi, M. & Ganjali, M. Detecting the Quantity of Acrylamide in Potato Chips Utilizing CdTe Surface Functionalized Quantum Dots with Fluorescence Spectroscopy. Int J Pept Res Ther 26, 823–830 (2020). https://doi.org/10.1007/s10989-019-09889-1

Download citation

Keywords

  • Potato chips
  • Acrylamide
  • Fluorescence spectroscopy
  • HPLC method
  • CdTe surface functionalized quantum dots